Leukemogenic transformation by HOXA cluster genes

Blood ◽  
2010 ◽  
Vol 115 (14) ◽  
pp. 2910-2918 ◽  
Author(s):  
Christian Bach ◽  
Sebastian Buhl ◽  
Dorothée Mueller ◽  
María-Paz García-Cuéllar ◽  
Emanuel Maethner ◽  
...  

Abstract HOX homeobox genes are important regulators of normal and malignant hematopoiesis. Abdominal-type HOXA genes like HOXA9 are highly leukemogenic. However, little is known about transformation by anterior HOXA genes. Here we performed a comprehensive assessment of the oncogenic potential of every HOXA gene in primary hematopoietic cells. With exception of HOXA2 and HOXA5, all HOXA genes caused a block or delay of hematopoietic differentiation and cooperated with Meis1. No evidence for the alleged tumor-suppressor function of HOXA5 could be found. Whereas all active HOXA genes immortalized mixed granulocytic/monocytic populations, HOXA13 preferentially specified monocytoid development. The anterior HOXA genes HOXA1, HOXA4, and HOXA6 transformed cells, generating permanent cell lines, although they did so less potently than HOXA9. Upon transplantation these lines induced myeloproliferation and acute myeloid leukemia in recipient animals. Kinetic studies with inducible HOX derivatives demonstrated that anterior HOXA genes autonomously contributed to cellular transformation. This function was not mediated by endogenous Hoxa9, which was persistently expressed in cells transformed by anterior HOX genes. In summary our results demonstrate a hitherto unexpected role of anterior HOXA genes in hematopoietic malignancy.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2962-2962
Author(s):  
Sebastian Buhl ◽  
Emanuel Maethner ◽  
Robert K. Slany

Abstract Abstract 2962 Poster Board II-938 HOX homeobox genes are important regulators of normal and malignant hematopoiesis and abdominal-type HOXA-cluster genes, in particular HOXA7 to HOXA10, are highly leukemogenic. However, little is known about the transforming abilities of anterior HOXA genes HOXA1 to HOXA6 despite a high prevalence of anterior HOX-expression in acute leukemia. Here we performed a comprehensive assessment of the oncogenic potential of every HOXA gene in primary hematopoietic cells. With exception of HOXA2 and HOXA5 all other HOXA genes caused a block or delay of hematopoietic differentiation in serial replating assays and all HOX genes also cooperated with Meis1. No evidence for the alleged tumor-suppressor function of HOXA5 could be found. Whereas all other active HOXA genes induced the outgrowth of mixed granulocytic/monocytic cells, HOXA13 preferentially specified the development of monocytes/macrophages. Albeit more weakly than HOXA9 also the anterior HOXA genes HOXA1, HOXA4, and HOXA6 transformed cells and generated permanent myelomonocytic cell lines arrested at various stages of differentiation. HOX-RNA profiling revealed that each of these lines also transcribed HOXA9. However, kinetic studies with inducible HOX-derivatives showed that HOXA9 expression was not under control by anterior HOXA proteins. Cellular differentiation was induced immediately after loss of anterior HOX activity and HOXA9 down regulation was a secondary event during maturation. This proves that anterior HOX proteins are able to transform hematopoetic cells through an individual contribution independent of HOXA9. In summary our results explain how HOXA9 can predominate in hematologic malignancies while simultaneously it is not necessarily required for transformation. Disclosures: No relevant conflicts of interest to declare.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 621 ◽  
Author(s):  
Si-Liang Chen ◽  
Zhe-Yuan Qin ◽  
Fang Hu ◽  
Yun Wang ◽  
Yu-Jun Dai ◽  
...  

The HOXA gene family is associated with various cancer types. However, the role of HOXA genes in acute myeloid leukemia (AML) have not been comprehensively studied. We compared the transcriptional expression, survival data, and network analysis of HOXA-associated signaling pathways in patients with AML using the ONCOMINE, GEPIA, LinkedOmics, cBioPortal, and Metascape databases. We observed that HOXA2-10 mRNA expression levels were significantly upregulated in AML and that high HOXA1-10 expression was associated with poor AML patient prognosis. The HOXA genes were altered in ~18% of the AML samples, either in terms of amplification, deep deletion, or elevated mRNA expression. The following pathways were modulated by HOXA gene upregulation: GO:0048706: embryonic skeletal system development; R-HSA-5617472: activation of HOX genes in anterior hindbrain development during early embryogenesis; GO:0060216: definitive hemopoiesis; hsa05202: transcriptional mis-regulation in cancer; and GO:0045638: negative regulation of myeloid cell differentiation, and they were significantly regulated due to alterations affecting the HOXA genes. This study identified HOXA3-10 genes as potential AML therapeutic targets and prognostic markers.


Author(s):  
Mays Abuhantash ◽  
Emma M. Collins ◽  
Alexander Thompson

Hematopoiesis, the process of blood formation, is controlled by a complex developmental program that involves intrinsic and extrinsic regulators. Blood formation is critical to normal embryonic development and during embryogenesis distinct waves of hematopoiesis have been defined that represent the emergence of hematopoietic stem or progenitor cells. The Class I family of homeobox (HOX) genes are also critical for normal embryonic development, whereby mutations are associated with malformations and deformity. Recently, members of the HOXA cluster (comprising 11 genes and non-coding RNA elements) have been associated with the emergence and maintenance of long-term repopulating HSCs. Previous studies identified a gradient of HOXA expression from high in HSCs to low in circulating peripheral cells, indicating their importance in maintaining blood cell numbers and differentiation state. Indeed, dysregulation of HOXA genes either directly or by genetic lesions of upstream regulators correlates with a malignant phenotype. This review discusses the role of the HOXA cluster in both HSC emergence and blood cancer formation highlighting the need for further research to identify specific roles of these master regulators in normal and malignant hematopoiesis.


2020 ◽  
Vol 19 (1) ◽  
pp. 89-95
Author(s):  
E. A. Shestakova

Introduction. Acute lymphoblastic leukemia (ALL) is diagnosed mainly in children (2/3 of diseases) making this type of leukemia one of the most common oncological diseases among children. Oncogenes are involved in the development of ALL, in particular the product of chromosomes 1 and 19 translocation, the oncogene E2A-PBX1 that codes for E2A-PBX1 chimeric oncoprotein with strong transcription activation properties as well as oncogenes of HOX family, mainly HOXA and HOXB cluster genes. E2A-PBX1 chimeric oncoprotein and НОХА proteins are associated in vivo with factors participating in epigenetic regulation of gene expression such as chromatin modifying and remodeling enzymes that partially determines their oncogenic properties. In previous studies we obtained data indicating genetic interactions of E2A-PBX1 and НОХ genes participating in leukemia development.The aim of this research was to confirm the role of Е2А – РВХ1 oncogene in the activation of the expression of НОХА cluster genes coding for the proteins with high oncogenic potential.Materials and methods. The objects of the study were four B cell progenitor (pre-B) leukemia cell lines: RCH-ACV, KASUMI-2, 697 and NALM-6. Standard polymerase chain reaction (PCR) was used for the identification of chromosome 1 and 19 translocation product, E2A-PBX1 oncogene and its expression. Method of reverse transcription coupled with quantitative polymerase chain reaction (Q-RT-PCR) was used for the analysis of 11 HOXA cluster genes expression.Results. It is demonstrated that E2A-PBX1 oncogene is present and expressed in three studied human pre-B leukemia cell lines, RCH-ACV, KASUMI-2 and 697, while its expression is absent in NALM-6 cell line. High expression of 7 from 11 HOXА cluster genes is revealed in RCH-ACV, KASUMI-2 and 697 cell lines expressing E2A-PBX1 oncogene, whereas NALM-6 cell line, that does not express E2A-PBX1 oncogene, also does not express HOXA genes except low expression of two genes from this cluster.Conclusions. The data obtained in this study demonstrate that RCH-ACV, KASUMI-2 and 697 human leukemia pre-B cell lines, containing and expressing Е2А-РВХ1 oncogene, also express most of HOXA genes (7 genes of 11 genes) at high level in contrast to control NALM-6 cell line that does not comprise Е2А-РВХ1 oncogene and almost does not express НОХА genes. Therefore, the results of this study suggest the participation of strong transcriptional activator, chimeric oncoprotein Е2А-РВХ1, associated with chromatin modifying and remodeling enzymes, in the expression activation of HOXA cluster genes that also possess high oncogenic potential.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3877-3877
Author(s):  
Huacheng Luo ◽  
Ganqian Zhu ◽  
Jie Zha ◽  
Bowen Yan ◽  
Ying Guo ◽  
...  

Abstract Several HOX loci associated long noncoding RNAs (lncRNAs) have been shown to regulate transcription of HOX genes through influencing epigenetic landscape. Especially, the posterior HOXA domain associated lncRNA HOTTIP acts as an epigenetic regulator that recruits WDR5/MLL complex to coordinate active chromatin modifications and HOXA genes expression in the development of animal digits. Despite HOX genes, especially HOXA genes, are highly expressed in many acute myeloid leukemia (AML) patients, it remains largely unknown whether and how HOTTIP lncRNA regulates hematopoietic stem cell (HSC) function and contributes to leukemogenesis. We showed previously that disruption of the CTCF boundary located between HOXA7 and HOXA9 genes (CBS7/9) resulted in reduced lncRNA HOTTIP and HOXA genes expression in MLL rearranged AML suggesting that HOTTIP may play a role in ectopic expression of the posterior HOXA gene. We employed a pooled CRISPR-Cas9 KO library to specifically screen lncRNAs in four HOX gene loci and identify HOTTIP as acritical regulator in controlling oncogenic HOX chromatin signature and associated gene expression patterns in AML by collaborating with posterior HOXA chromatin boundary. HOTTIP is upregulated in AML patients with MLL-rearrangement or NPM1 mutation. AML patients with high HOTTIP expression exhibits a significantly shortened survival compared to low HOTTIP expressing patients. To test whether HOTTIP acts to coordinate posterior chromatin domain and HOXA genes activation in AML, we manipulated HOTTIP lncRNA expression levels in the MLL-AF9 rearranged MOLM13 by loss-of-function KO and gain-of function rescue, as well as carried out genome wide chromatin and transcriptomic analysis to intterrogate the role of HOTTIP in control of AML specific posterior HOXA chromatin domain. We found that knock-out of HOTTIP lncRNA led to a loss of active chromatin structure and invasion of repressive H3K27me3 mark over the posterior HOXA domain. HOTTIP KO attenuated progression of AML in the transplanted AML mouse model resembling the effect of CBS7/9 boundary disruption, while transcriptional activation of HOTTIP lncRNA in the CBS7/9 boundary-disrupted AML cells restored HOXA locus chromatin signature and gene expression as well as reversed the CBS7/9-mediated anti-leukemic effects. To further determine the role of HOTTIP lncRNA in regulating HSC function and leukemogenesis, we generated transgenic mice that expresses Hottip lncRNA under the control of the hematopoietic specific Vav1 enhancer and promoter. The Hottip transgenic (Tg) mice exhibited increased WBC and neutrophil counts and developed splenomegaly indicating that enforced expression of Hottip lncRNA resulted in perturbation of hematopoiesis. Furthermore, overexpression of Hottip lncRNA in mice bone marrow hematopoietic compartment strongly perturbed hematopoietic stem and progenitor cell (HSC/HPC) function by altering self-renewal and differentiation property of HSC/HPCs through affecting homeotic gene associated oncogenic transcription program. Approximately 20% of Hottip lncRNA transgenic mice developed abnormal hematopoietic phenotypes resembling AML-like disease. RNA-seq and ATAC-seq analysis indicated that overexpression of Hottip enhanced promoter chromatin accessibility and stimulates transcription of genes and pathways involved in HSC function and leukemogenesis, including WNT signaling, hematopoietic cell lineage, cell cycle, Hoxa9, Hoxa13, and Meis1, Runx1, and Twist1 genes. Thus, Hottip lncRNA overexpression acts as an oncogenic event to promote HSC self-renewal and HPC proliferation by reprograming leukemic associated chromatin signature and transcription programs. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1271-1271
Author(s):  
Janetta J. Bijl ◽  
Hayet Cherief ◽  
Denis-Claude Roy

Abstract Mutants for single homeobox genes are showing neglible to mild phenotypes in the hematopoietic compartment. This is likely due to functional redundancy between Hox genes that has been demonstrated in embryonic development by compound mutant models. Interestingly, our previous data showed that hematopoietic stem cells (HSCs) lacking the majority of the HoxB genes (Hoxb1-Hoxb9) remained fully competent in replenishment of the hematopoietic compartment (Bijl, 2006). In addition we reported the expression of the majority of the HoxA cluster genes in HSC enriched E14.5 fetal liver fractions at levels at least one log higher than for HoxB cluster genes, suggesting that not HoxB but HoxA genes have a physiological role in hematopoiesis at that stage in the ontogeny. To investigate further whether HoxA genes are required for definitive hematopoiesis we used a conditional knock-out mouse model, in which the HoxA cluster was flanked by loxP sites (HoxAflox/flox). To excise the HoxA genes Cre recombinase in conjunction with GFP was retrovirally expressed in HoxAflox/flox fetal liver cells (Ly5.2). Flow cytometry showed transduction efficiencies in total fetal liver of 40% for Cre-GFP and 60% for MSCV-GFP control vector. Transduced cell composites were both plated in myeloid colony forming unit assays and transplanted in congenic (Ly5.1) mice to evaluate the transduction rate in progenitor populations and their capacity to proliferate and differentiate. Cre+ progenitor cells were able to grow out in colonies, and cultures showed a transduction efficiency of 69% for Cre-GFP and 99% for control vectors at the level of progenitors. The excision of the HoxA locus was confirmed by PCR for two Cre-GFP colonies. However, Cre-GFP+ colonies were much smaller than control colonies, indicating a defect in the proliferation potential of Cre+ myeloid progenitors. Further expansion of GM colonies in liquid culture was less efficient for Cre+ (1 out of 15), than for controls (5 out of 24), underlining a major defect in proliferation of early myeloid progenitors with granulocytic and monocytic differentiation potential in the absence of HoxA genes. All the colony types (GEMM, GM-CFU, G-CFU, M-CFU and BFU-E) were present in the Cre+ culture, but GM-CFUs and M-CFUs were proportional less represented than in control cultures (17% vs. 26% and 40% vs. 48%, respectively), indicating that HoxA genes have a function in early myeloid differentiation. Moreover, all colonies were in general poorly differentiated, showing that myeloid differentiation is sensible to reduced HoxA levels particularly in progenitors for the granulocytic/monocytic lineage. The capacity of HoxA−/− progenitors to induce small colonies might be due to some residual levels at the time of excision or in the case of mature progenitors a reduced requirement for HoxA genes, which is in agreement with the decreased expression of Hox genes with maturation of blood cells. No progeny of Cre-GFP+ cells was observed in irradiated recipients 4 weeks post-transplantation, which demonstrate complete failure of HoxA−/− progenitors to repopulate. However, it is too early to conclude whether deletion of HoxA genes affects the activity of HSCs. Altogether our in vitro and in vivo data show that HoxA genes are essential for the proliferation and differentiation of early myeloid progenitors that seems not to be compensated by other Hox gene members. The effect of HoxA deletion on HSC activity is currently under investigation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2359-2359
Author(s):  
Charles-Etienne Lebert-Ghali ◽  
Marilaine Fournier ◽  
Heloise Frison ◽  
Janetta Jacoba Bijl

Abstract Abstract 2359 BACKGROUND AND OBJECTIVE: Functional compensation between homeodomain proteins has hindered the ability to unravel their role in hematopoiesis using single gene knock-outs. Although several Hox genes can expand hematopoietic stem cells (HSC) when overexpressed, it remains unclear whether these genes are required for proper adult hematopoiesis. Moreover, it has been shown that HoxB genes are dispensable for hematopoiesis, and that expression of most HoxA genes is ten-fold superior to genes from other Hox clusters in HSC enriched fetal liver populations (Bijl, 2006). Using a haploinsufficient mice for the entire HoxA cluster (HoxA+/−), we have shown that adult HSCs and progenitors are particularly sensitive to HoxA gene levels (Lebert-Ghali, 2010). Thus, we hypothesize that HoxA genes have a crucial function in definitive hematopoiesis. MATERIALS AND METHODS: To assess the role of HoxA genes in definitive hematopoiesis, we used a conditional mutant mouse model for the entire HoxA cluster in combination with an inducible Mx-Cre model. The functional effect of HoxA cluster deletion on hematopoietic cells was analysed by culture and repopulation assays. RESULTS: Highly efficient excision of HoxA cluster was achieved by 7 doses of poly(I):poly(C) treatment (91–100%). Mice (control, n=3 and Mx-CreHoxAflox/flox, n=3) were sacrificed and analysed three days after the last injection. Immunophenotyping showed a 3 to 4 fold increase of CD150+/CD48-/CD244-/Sca+/c-kit+/Lin- hematopoietic stem cells. Despite the enhancement of the HoxA−/− HSC population, single cell cultures showed that their proliferative potential in response to growth factors was significantly reduced (p=0.036) as growth was observed only for 16.6 ± 14.4% of HoxA−/− compared to 42.4 ±10.3% of control HSCs after 3-weeks of culturing. In contrast, the number of multipotent progenitor (MPP) cells (CD34+/CD135+/Sca+/c-kit+/Lin-) was reduced, indicating a partial block from the short-term HSC (CD34+/CD135-/Sca+/c-kit+/Lin-) to the MPP transition. Colony forming cell assays showed a dramatic decrease of B-cell progenitors in the bone marrow (BM) (10-fold, p=0.0079), while myeloid progenitors were not affected by the deletion. Transplantation assays demonstrated that grafts composed of > 91% HoxA−/− HSCs have slower repopulation kinetics compared to control HSCs and strongly reduced long-term engraftment (37 ± 28% and 92 ± 6% for HoxA−/− and control, respectively, 20 weeks post-transplantation). Genotyping of engrafted donor cells is currently analyzed to confirm repopulation by HoxA−/− cells. Consistent with the observations in primary mice, peripheral blood analysis revealed also a dramatic reduction of B220+ B-cell population in mice transplanted with HoxA−/− BM cells compared to control (7.1 ± 8.5% and 56.2 ±4.8% respectively p=0,000002) Altogether, in vitro assays and transplantation assays revealed that the functions of HoxA−/− HSC seem to be impaired. CONCLUSION: Together, these results show that HoxA cluster genes are required for both HSC function and B cell development, indicating that these genes are important regulators of adult hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


Biochemistry ◽  
2005 ◽  
Vol 44 (18) ◽  
pp. 6929-6937 ◽  
Author(s):  
Siddegowda Bhavani ◽  
V. Trivedi ◽  
V. R. Jala ◽  
H. S. Subramanya ◽  
Purnima Kaul ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brianna J. Klein ◽  
Anagha Deshpande ◽  
Khan L. Cox ◽  
Fan Xuan ◽  
Mohamad Zandian ◽  
...  

AbstractChromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.


Sign in / Sign up

Export Citation Format

Share Document