scholarly journals STAT3 controls myeloid progenitor growth during emergency granulopoiesis

Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2462-2471 ◽  
Author(s):  
Huiyuan Zhang ◽  
Hoainam Nguyen-Jackson ◽  
Athanasia D. Panopoulos ◽  
Haiyan S. Li ◽  
Peter J. Murray ◽  
...  

Abstract Granulocyte colony-stimulating factor (G-CSF) mediates “emergency” granulopoiesis during infection, a process that is mimicked by clinical G-CSF use, yet we understand little about the intracellular signaling cascades that control demand-driven neutrophil production. Using a murine model with conditional deletion of signal transducer and activator of transcription 3 (STAT3) in bone marrow, we investigated the cellular and molecular mechanisms of STAT3 function in the emergency granulopoiesis response to G-CSF administration or infection with Listeria monocytogenes, a pathogen that is restrained by G-CSF signaling in vivo. Our results show that STAT3 deficiency renders hematopoietic progenitor cells and myeloid precursors refractory to the growth-promoting functions of G-CSF or L monocytogenes infection. STAT3 is necessary for accelerating granulocyte cell-cycle progression and maturation in response to G-CSF. STAT3 directly controls G-CSF–dependent expression of CCAAT-enhancer-binding protein β (C/EBPβ), a crucial factor in the emergency granulopoiesis response. Moreover, STAT3 and C/EBPβ coregulate c-Myc through interactions with the c-myc promoter that control the duration of C/EBPα occupancy during demand-driven granulopoiesis. These results place STAT3 as an essential mediator of emergency granulopoiesis by its regulation of transcription factors that direct G-CSF–responsive myeloid progenitor expansion.

2005 ◽  
Vol 202 (1) ◽  
pp. 85-96 ◽  
Author(s):  
Bo T. Porse ◽  
David Bryder ◽  
Kim Theilgaard-Mönch ◽  
Marie S. Hasemann ◽  
Kristina Anderson ◽  
...  

CCAAT/enhancer binding protein (C/EBP)α is a myeloid-specific transcription factor that couples lineage commitment to terminal differentiation and cell cycle arrest, and is found mutated in 9% of patients who have acute myeloid leukemia (AML). We previously showed that mutations which dissociate the ability of C/EBPα to block cell cycle progression through E2F inhibition from its function as a transcriptional activator impair the in vivo development of the neutrophil granulocyte and adipose lineages. We now show that such mutations increase the capacity of bone marrow (BM) myeloid progenitors to proliferate, and predispose mice to a granulocytic myeloproliferative disorder and transformation of the myeloid compartment of the BM. Both of these phenotypes were transplantable into lethally irradiated recipients. BM transformation was characterized by a block in granulocyte differentiation, accumulation of myeloblasts and promyelocytes, and expansion of myeloid progenitor populations—all characteristics of AML. Circulating myeloblasts and hepatic leukocyte infiltration were observed, but thrombocytopenia, anemia, and elevated leukocyte count—normally associated with AML—were absent. These results show that disrupting the cell cycle regulatory function of C/EBPα is sufficient to initiate AML-like transformation of the granulocytic lineage, but only partially the peripheral pathology of AML.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3619-3619 ◽  
Author(s):  
Huiyuan Zhang ◽  
Hoainam Nguyen-Jackson ◽  
Athanasia Panopoulos ◽  
Haiyan S Li ◽  
Peter J Murray ◽  
...  

Abstract Abstract 3619 Poster Board III-555 Granulocyte colony-stimulating factor (G-CSF) controls neutrophil production in the bone marrow under steady state conditions and during demand-driven hematopoiesis occurring in response to infection. STAT3 is a principal signaling molecule activated by the G-CSF receptor (G-CSFR). We previously reported that STAT3 has an important role in demand-driven granulopoiesis, although its cellular and molecular mechanisms have been unclear. To address this, we investigated STAT3 function in emergency granulopoiesis stimulated by G-CSF administration or infection with Listeria monocytogenes, which is restrained by the G-CSF response pathway in vivo. Our results show that STAT3-deficiency renders hematopoietic stem cells and myeloid progenitors refractory to the proliferation-inducing effects of G-CSF or Listeria monocytogenes infection. STAT3-deficient myeloid progenitors have a cell autonomous defect in G-CSF-responsive cell cycle progression and undergo delayed granulocyte maturation relative to wild type cells. To define STAT3 target pathways in granulocytic progenitors, we investigated the expression of CCAAT enhancer binding protein (C/EBP) beta, a transcription factor that is necessary for G-CSF-driven emergency granulopoiesis. We found that STAT3 directly regulates G-CSF-responsive C/EBPbeta expression by binding to Cebpb promoter. Moreover, we show that STAT3 and C/EBPbeta co-regulate c-Myc during emergency granulopoiesis. These results place STAT3 as a crucial G-CSF-responsive signal transducer during demand-driven granulopoiesis, through its regulation of critical transcription factors in developing granulocytes. Disclosures: Zhang: Amgen: Research Funding. Nguyen-Jackson:Amgen: Research Funding. Watowich:Amgen, Inc: Research Funding.


2019 ◽  
Vol 26 (39) ◽  
pp. 6976-6990 ◽  
Author(s):  
Ana María González-Paramás ◽  
Begoña Ayuda-Durán ◽  
Sofía Martínez ◽  
Susana González-Manzano ◽  
Celestino Santos-Buelga

: Flavonoids are phenolic compounds widely distributed in the human diet. Their intake has been associated with a decreased risk of different diseases such as cancer, immune dysfunction or coronary heart disease. However, the knowledge about the mechanisms behind their in vivo activity is limited and still under discussion. For years, their bioactivity was associated with the direct antioxidant and radical scavenging properties of phenolic compounds, but nowadays this assumption is unlikely to explain their putative health effects, or at least to be the only explanation for them. New hypotheses about possible mechanisms have been postulated, including the influence of the interaction of polyphenols and gut microbiota and also the possibility that flavonoids or their metabolites could modify gene expression or act as potential modulators of intracellular signaling cascades. This paper reviews all these topics, from the classical view as antioxidants in the context of the Oxidative Stress theory to the most recent tendencies related with the modulation of redox signaling pathways, modification of gene expression or interactions with the intestinal microbiota. The use of C. elegans as a model organism for the study of the molecular mechanisms involved in biological activity of flavonoids is also discussed.


2018 ◽  
Vol 239 (3) ◽  
pp. 289-301 ◽  
Author(s):  
Rita Sharma ◽  
Quyen Luong ◽  
Vishva M Sharma ◽  
Mitchell Harberson ◽  
Brian Harper ◽  
...  

Growth hormone (GH) has long been known to stimulate lipolysis and insulin resistance; however, the molecular mechanisms underlying these effects are unknown. In the present study, we demonstrate that GH acutely induces lipolysis in cultured adipocytes. This effect is secondary to the reduced expression of a negative regulator of lipolysis, fat-specific protein 27 (FSP27; aka Cidec) at both the mRNA and protein levels. These effects are mimicked in vivo as transgenic overexpression of GH leads to a reduction of FSP27 expression. Mechanistically, we show GH modulation of FSP27 expression is mediated through activation of both MEK/ERK- and STAT5-dependent intracellular signaling. These two molecular pathways interact to differentially manipulate peroxisome proliferator-activated receptor gamma activity (PPARγ) on the FSP27 promoter. Furthermore, overexpression of FSP27 is sufficient to fully suppress GH-induced lipolysis and insulin resistance in cultured adipocytes. Taken together, these data decipher a molecular mechanism by which GH acutely regulates lipolysis and insulin resistance in adipocytes.


PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1010018
Author(s):  
Jianghong Cheng ◽  
Jia Liang ◽  
Yingzhe Li ◽  
Xia Gao ◽  
Mengjun Ji ◽  
...  

Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.


2015 ◽  
Vol 61 (1) ◽  
pp. 19-29 ◽  
Author(s):  
A.O. Shpakov ◽  
E.A. Shpakova

The regulation of signaling pathways involved in the control of many physiological functions is carried out via the heterotrimeric G protein-coupled receptors (GPCR). The search of effective and selective regulators of GPCR and intracellular signaling cascades coupled with them is one of the important problems of modern fundamental and clinical medicine. Recently data suggest that synthetic peptides and their derivatives, structurally corresponding to the intracellular and transmembrane regions of GPCR, can interact with high efficiency and selectivity with homologous receptors and influence, thus, the functional activity of intracellular signaling cascades and fundamental cellular processes controlled by them. GPCR-peptides are active in both in vitro and in vivo. They regulate hematopoiesis, angiogenesis and cell proliferation, inhibit tumor growth and metastasis, and prevent the inflammatory diseases and septic shock. These data show greatest prospects in the development of the new generations of drugs based on GPCR-derived peptides, capable of regulating the important functions of the organism.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1384 ◽  
Author(s):  
Shang-Tse Ho ◽  
Chi-Chen Lin ◽  
Yu-Tang Tung ◽  
Jyh-Horng Wu

Yatein is an antitumor agent isolated from Calocedrus formosana Florin leaves extract. In our previous study, we found that yatein inhibited the growth of human lung adenocarcinoma A549 and CL1-5 cells by inducing intrinsic and extrinsic apoptotic pathways. To further uncover the effects and mechanisms of yatein-induced inhibition on A549 and CL1-5 cell growth, we evaluated yatein-mediated antitumor activity in vivo and the regulatory effects of yatein on cell-cycle progression and microtubule dynamics. Flow cytometry and western blotting revealed that yatein induces G2/M arrest in A549 and CL1-5 cells. Yatein also destabilized microtubules and interfered with microtubule dynamics in the two cell lines. Furthermore, we evaluated the antitumor activity of yatein in vivo using a xenograft mouse model and found that yatein treatment altered cyclin B/Cdc2 complex expression and significantly inhibited tumor growth. Taken together, our results suggested that yatein effectively inhibited the growth of A549 and CL1-5 cells possibly by disrupting cell-cycle progression and microtubule dynamics.


2020 ◽  
Vol 21 (11) ◽  
pp. 3818
Author(s):  
Maria Carmela Annunziata ◽  
Melania Parisi ◽  
Gabriella Esposito ◽  
Gabriella Fabbrocini ◽  
Rosario Ammendola ◽  
...  

FPR1, FPR2, and FPR3 are members of Formyl Peptides Receptors (FPRs) family belonging to the GPCR superfamily. FPR2 is a low affinity receptor for formyl peptides and it is considered the most promiscuous member of this family. Intracellular signaling cascades triggered by FPRs include the activation of different protein kinases and phosphatase, as well as tyrosine kinase receptors transactivation. Protein kinases and phosphatases act coordinately and any impairment of their activation or regulation represents one of the most common causes of several human diseases. Several phospho-sites has been identified in protein kinases and phosphatases, whose role may be to expand the repertoire of molecular mechanisms of regulation or may be necessary for fine-tuning of switch properties. We previously performed a phospho-proteomic analysis in FPR2-stimulated cells that revealed, among other things, not yet identified phospho-sites on six protein kinases and one protein phosphatase. Herein, we discuss on the selective phosphorylation of Serine/Threonine-protein kinase N2, Serine/Threonine-protein kinase PRP4 homolog, Serine/Threonine-protein kinase MARK2, Serine/Threonine-protein kinase PAK4, Serine/Threonine-protein kinase 10, Dual specificity mitogen-activated protein kinase kinase 2, and Protein phosphatase 1 regulatory subunit 14A, triggered by FPR2 stimulation. We also describe the putative FPR2-dependent signaling cascades upstream to these specific phospho-sites.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4034-4034 ◽  
Author(s):  
Emanuele De Lorenzo ◽  
Serena Pillozzi ◽  
Marika Masselli ◽  
Olivia Crociani ◽  
Andrea Becchetti ◽  
...  

Abstract Targeted therapies are considerably changing the treatment and prognosis of hematologic malignancies. The progressive elucidation of the molecular mechanisms that regulate establishment and progression of tumours is leading to more specific and efficacious pharmacological approaches. In this picture, ion channels represent a relatively unexpected, but very promising players. In particular hERG1 channel expression is altered in many primary leukemias and frequently turn out to exert pleiotropic effects on cancer cell physiology, interaction with the external matrix and stimulation of angiogenesis. hERG1 channels can also trigger intracellular signaling cascades by forming protein complexes with integrins as well as other membrane proteins. These results convey the hypothesis that drugs acting on ion channels could have therapeutic value in the treatment of cancers. Recent evidence suggests that, in certain tumours, application of channel inhibitors does in fact impair cell growth both in vitro and in vivo. A major objection to such a pharmacological approach is the presence of serious side effects, particularly cardiac arrhythmias, especially in the case of hERG1 blockers. This flaw is now being overcome by different approaches, ie the identification of non-arrhythmogenic compounds or calibration of treatment by exploitation of drug selectivity for specific channel states. We tested this possibility in a preclinical model represented by NOD-SCID mice injected with acute leukemia cells and treated with hERG1 blockers. Previous experiments, using NOD/SCID mice injected with AML cells, had shown that herg1 over-expression confers a greater malignancy (Pillozzi S et al, Blood110:1238–50, 2007). The treatment of mice injected with AML cells with specific hERG1 blockers as well as with anti-hERG1 mAb, led to a significant decrease of AML engraftment into the BM and migration into the PB and peripheral organs (Pillozzi S et al, Blood ASH110: 877, 2007). We recently extended our work to an AML cell line stably transfected with the herg1 cDNA (HL60-hERG1), as well as to a ALL cell line (697), which endogenously shows a high herg1 expression. Three groups of treatment were established: control group, E4031-treated group (i.p. starting 1 week after inoculum, 20 mg/kg, daily for 2 weeks) and E4031-treated group (as above, daily until the end of experiment). Various morphometric characteristics of microvessels (density, total vascular area, several size- and shape-related parameters), highlighted through anti-CD34 staining, were quantitated in the BM. Overall, the group of mice treated with hERG1 inhibitors had decreased number of microvessels, decreased total vascular area and size-related parameters. Moreover, E4031 treated mice showed a longer survival compared to the untreated ones. Finally, we evaluated cardiac toxicity in vivo of E4031: no significant variation in ECG parameters were detected, nor gross morphological alterations. Nevertheless, we are also testing different pharmacological categories of hERG1 blockers, such the anti-psychotic drug sertindole, proven to be avoid of any cardiac side effect, despite a strong block of hERG1.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Madhulika Singh ◽  
Shankar Suman ◽  
Yogeshwer Shukla

Skin cancer is still a major cause of morbidity and mortality worldwide. Skin overexposure to ultraviolet irradiations, chemicals, and several viruses has a capability to cause severe skin-related disorders including immunosuppression and skin cancer. These factors act in sequence at various steps of skin carcinogenesis via initiation, promotion, and/or progression. These days cancer chemoprevention is recognized as the most hopeful and novel approach to prevent, inhibit, or reverse the processes of carcinogenesis by intervention with natural products. Phytochemicals have antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification capabilities thereby considered as efficient chemopreventive agents. Considerable efforts have been done to identify the phytochemicals which may possibly act on one or several molecular targets that modulate cellular processes such as inflammation, immunity, cell cycle progression, and apoptosis. Till date several phytochemicals in the light of chemoprevention have been studied by using suitable skin carcinogenicin vitroandin vivomodels and proven as beneficial for prevention of skin cancer. This revision presents a comprehensive knowledge and the main molecular mechanisms of actions of various phytochemicals in the chemoprevention of skin cancer.


Sign in / Sign up

Export Citation Format

Share Document