scholarly journals Deciphering the human platelet sheddome

Blood ◽  
2011 ◽  
Vol 117 (1) ◽  
pp. e15-e26 ◽  
Author(s):  
Karen P. Fong ◽  
Colin Barry ◽  
Anh N. Tran ◽  
Elizabeth A. Traxler ◽  
Kenneth M. Wannemacher ◽  
...  

Abstract Activated platelets shed surface proteins, potentially modifying platelet function as well as providing a source of bioactive fragments. Previous studies have identified several constituents of the platelet sheddome, but the full extent of shedding is unknown. Here we have taken a global approach, analyzing protein fragments in the supernate of activated platelets using mass spectroscopy and looking for proteins originating from platelet membranes. After removing plasma proteins and microparticles, 1048 proteins were identified, including 69 membrane proteins. Nearly all of the membrane proteins had been detected previously, but only 10 had been shown to be shed in platelets. The remaining 59 are candidates subject to confirmation. Based on spectral counts, protein representation in the sheddome varies considerably. As proof of principle, we validated one of the less frequently detected proteins, semaphorin 7A, which had not previously been identified in platelets. Surface expression, cleavage, and shedding of semaphorin 7A were demonstrated, as was its association with α-granules. Finally, cleavage of semaphorin 7A and 12 other proteins was substantially reduced by an inhibitor of ADAM17, a known sheddase. These results define a subset of membrane proteins as sheddome candidates, forming the basis for further studies examining the impact of ectodomain shedding on platelet function.

1994 ◽  
Vol 72 (06) ◽  
pp. 912-918 ◽  
Author(s):  
M Gawaz ◽  
I Ott ◽  
A J Reininger ◽  
F-J Neumann

SummaryMagnesium deficiency and its association with platelet hyperreactivity has been well recognised in a variety of diseases including myocardial infarction, preeclampsia, and diabetes. In order to investigate potential effects of intravenous Mg2+ supplementation, platelet function was studied by measurements of in vitro bleeding time (BT) and of fibrinogen (Fg)-mediated aggregation of washed platelets. In addition, the effect of Mg2+ on platelet adhesion onto immobilised Fg, on Fg binding to activated platelets, and on surface expression of GMP-140 or GP53 was evaluated. Mg2+(4 mM) prolonged in vitro BT by 30% and inhibited Fg-mediated aggregation significantly, independent of the agonist used to initiate platelet aggregation (ADP, collagen, epinephrine, thrombin, phorbol ester). Adhesion of resting platelets to immobilised Fg was reduced by 50% in the presence of 2 mM Mg2+. Moreover, Mg2+ reduced Fg binding to ADP- or collagen-stimulated platelets as well as surface expression of GMP-140 with an IC50 of approximately 3 mM. Intravenous administration of Mg2+ to healthy volunteers inhibited both ADP-induced platelet aggregation (p <0.05) by 40% and binding of Fg or surface expression of GMP-140 by 30% (p <0.05). Thus, pharmacological concentrations of Mg2+ effectively inhibit platelet function in vitro and ex vivo.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3730-3730 ◽  
Author(s):  
Alexander Prete ◽  
Alexander Urtula ◽  
Renata Grozovsky

Abstract Platelets are fundamentally important in normal hemostasis and pathological thrombosis (i.e. cardiovascular diseases, stroke, etc.). Platelets mediate the initial first-step in hemostasis through surface glycoproteins like the GPIb-IX-V complex and integrin αIIbβ3 (GPIIbIIIa). Although the functions of platelet surface glycoproteins are well known, the roles of posttranslational modifications on those surface glycoproteins are poorly understood. We have recently shown that sialic acid is a key regulator of platelet survival. As platelets circulate and age in blood, they lose sialic acid and are rapidly cleared by the hepatocytes where they stimulate liver TPO production and consequently regulate thrombopoiesis. Here, we investigated the importance of glycosylation to platelet function by measuring the impact of sialic acid content on platelet responses to thrombin activation. Freshly isolated wild-type washed platelets were treated with a2-3, -6, -8 sialidase (neuraminidase, NA) to remove sialic acid from the platelet surface glycoproteins or with a competitive NA inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA) to prevent sialic acid loss by the action of sialidases. After treatment with both NA and DANA, platelets were activated with Thrombin (THR, 0.1U/mL). As controls, aliquots of freshly isolated wild-type washed platelets were left untreated (Rest), only treated with neuraminidase (NA) or activated with Thrombin (THR). First, we measured b-galactose exposure using RCA-I lectin to test the efficacy of treatments. As expected, NA treated platelets showed significantly higher RCA-I binding when compared to Rest, THR and DANA treated platelets. Noteworthy, RCA-I binding to THR activated platelets was higher than Rest or DANA + THR platelets. We next investigated the effect of NA and DANA treatments of platelet degranulation. Thrombin activated platelets showed high level of P-selectin surface exposure when compared to Rest platelets. NA treatment alone caused low P-selectin exposure (~18% positive platelets) and NA + THR treated platelets showed high levels of P-selectin similar to THR only treatment. Interestingly, DANA +THR platelets showed a lower percentage of P-selectin positive platelets when compared to THR activation only (~50% compared to ~85%). In platelets, thrombin signaling is mediated by PARs, G-protein-coupled receptors that trigger several intracellular pathways, including phosphorylation of several proteins. We next investigated if glycan remodeling of surface glycoproteins could alter the intracellular signaling triggered by Thrombin. Our data shows that NA + THR platelets have increased phosphorylated Akt when compared to THR alone and pretreatment with DANA dampens the phosphorylation signal triggered by THR activation. These data suggest that the glycosylation status of surface glycoproteins on platelets regulates thrombin-induced activation. Neuraminidases are lysosome-resident enzymes, they act primarily intracellularly but can also be recruited to the cell surface. Studies have shown that Neu1, one of the neuraminidase isoforms, regulates lysosome exocytosis by desialylation of LAMP1. Flow cytometry analysis of LAMP1 surface expression showed that THR activation induced LAMP1 surface exposure when compared to Rest. NA treatment did not affect LAMP1 surface exposure caused by THR, but DANA treatment completely blocked LAMP1 translocation to the surface, suggesting that Neuraminidase is a regulator of lysosomal exocytosis in platelets. Taken together, our data shows that sialic acid is a potential regulator of platelet function. More studies are needed to identify platelet glycoproteins affected by sialic acid changes. Nonetheless, these data illustrate that glycan remodeling is ideally suited for therapeutic manipulation to prevent undesired platelet activation. Disclosures No relevant conflicts of interest to declare.


1994 ◽  
Vol 72 (02) ◽  
pp. 244-249 ◽  
Author(s):  
Aura S Kamiguti ◽  
Joseph R Slupsky ◽  
Mirko Zuzel ◽  
Charles R M Hay

SummaryHaemorrhagic metalloproteinases from Bothrops jararaca and other venoms degrade vessel-wall and plasma proteins involved in platelet plug and fibrin clot formation. These enzymes also cause proteolytic digestion of fibrinogen which has been suggested to cause defective platelet function. Fibrinogen degradation by jararhagin, a metalloproteinase from B. jararaca, and the effect of jararhagin fibrinogenolysis on both platelet aggregation and fibrin clot formation were investigated. Jararhagin was found to cleave human fibrinogen in the C-terminal region of the Aα-chain giving rise to a 285-290 kDa fibrinogen molecule lacking the Aα-chain RGD 572-574 platelet-binding site. Platelet binding and aggregation of ADP-activated platelets is unaffected by this modification. This indicates that the lost site is not essential for platelet aggregation, and that the remaining platelet binding sites located in the N-terminal portion of Aα chains (RGD 95-97) and the C-terminal of γ chains (dodecapeptide 400-411) are unaffected by jararhagin-digestion of fibrinogen. Fibrin clot formation with thrombin of this remnant fibrinogen molecule was defective, with poor polymerization of fibrin monomers but normal release of FPA. The abnormal polymerization could be explained by the loss of one of the two complementary polymerization sites required for side-by-side association of fibrin protofibrils. Jararhagin-induced inhibition of platelet function, an important cause of haemorrhage in envenomed patients, is not caused by proteolysis of fibrinogen, as had been thought, and the mechanism remains to be elucidated.


1995 ◽  
Vol 74 (05) ◽  
pp. 1316-1322 ◽  
Author(s):  
Mary Ann McLane ◽  
Jagadeesh Gabbeta ◽  
A Koneti Rao ◽  
Lucia Beviglia ◽  
Robert A Lazarus ◽  
...  

SummaryNaturally-occurring fibrinogen receptor antagonists and platelet aggregation inhibitors that are found in snake venom (disintegrins) and leeches share many common features, including an RGD sequence, high cysteine content, and low molecular weight. There are, however, significant selectivity and potency differences. We compared the effect of three proteins on platelet function: albolabrin, a 7.5 kDa disintegrin, eristostatin, a 5.4 kDa disintegrin in which part of the disintegrin domain is deleted, and decorsin, a 4.5 kDa non-disintegrin derived from the leech Macrobdella decora, which has very little sequence similarity with either disintegrin. Decorsin was about two times less potent than albolabrin and six times less potent than eristostatin in inhibiting ADP- induced human platelet aggregation. It had a different pattern of interaction with glycoprotein IIb/IIIa as compared to the two disintegrins. Decorsin bound with a low affinity to resting platelets (409 nM) and to ADP-activated platelets (270 nM), and with high affinity to thrombin- activated platelets (74 nM). At concentrations up to 685 nM, it did not cause expression of a ligand-induced binding site epitope on the (β3 subunit of the GPIIb/IIIa complex. It did not significantly inhibit isolated GPIIb/IIIa binding to immobilized von Willebrand Factor. At low doses (1.5-3.0 μg/mouse), decorsin protected mice against death from pulmonary thromboembolism, showing an effect similar to eristostatin. This suggested that decorsin is a much more potent inhibitor of platelet aggregation in vivo than in vitro, and it may have potential as an antiplatelet drug.


2019 ◽  
Vol 72 (8) ◽  
pp. 1426-1436
Author(s):  
Justyna Rosińska ◽  
Joanna Maciejewska ◽  
Robert Narożny ◽  
Wojciech Kozubski ◽  
Maria Łukasik

Introduction: Elevated concentrations of platelet-derived microvesicles are found in cerebrovascular diseases. The impact of acetylsalicylic acid on these microvesicles remains inconsistent, despite its well-established effect on platelet aggregation. High residual platelet aggregation is defined as high on-treatment platelet reactivity, while “treatment failure” is the occurrence of vascular events despite antiplatelet treatment. The aim of this study was to determine whether the antiaggregatory effect of acetylsalicylic acid correlates with platelet-derived microvesicles in convalescent ischaemic stroke patients and cardiovascular risk factor controls as well as to evaluate the association between high on-treatment platelet reactivity and recurrent vascular events with the studied platelet-derived microvesicle parameters. Materials and methods: The study groups consisted of 76 convalescent stroke patients and 74 controls. Total platelet-derived microvesicles, annexino-positive microvesicles number, and platelet-derived microvesicles with surface expression of proinflammatory (CD40L, CD62P, CD31) and procoagulant (PS, GPIIb/IIIa) markers were characterized and quantified using flow cytometry. Cyclooxygenase-1-specific platelet responsiveness, with whole blood impedance platelet aggregation under arachidonic acid stimulation and the serum concentration of thromboxane B2, were evaluated. Results: Neither acetylsalicylic acid intake nor modification of its daily dose caused statistically significant differences in the studied microvesicle parameters. Additionally, no statistically significant differences in the studied microvesicle parameters were revealed between high on-treatment platelet reactivity and non-high on-treatment platelet reactivity subjects in either study subgroup. However, elevated concentrations of PAC-1+/CD61+, CD62P+/CD61+ and CD31+/CD61+ microvesicles were found in stroke patients with treatment failure, defined in this study as a recurrent vascular events in a one-year follow-up period. Conclusions: This study revealed no relationship between circulating microvesicle number and platelet aggregation. The procoagulant and proinflammatory phenotype of circulating platelet-derived microvesicles might contribute to acetylsalicylic acid treatment failure.


Author(s):  
Kerstin Jurk ◽  
Katharina Neubauer ◽  
Victoria Petermann ◽  
Elena Kumm ◽  
Barbara Zieger

AbstractSeptins (Septs) are a widely expressed protein family of 13 mammalian members, recognized as a unique component of the cytoskeleton. In human platelets, we previously described that SEPT4 and SEPT8 are localized surrounding α-granules and move to the platelet surface after activation, indicating a possible role in platelet physiology. In this study, we investigated the impact of Sept8 on platelet function in vitro using Sept8-deficient mouse platelets. Deletion of Sept8 in mouse platelets caused a pronounced defect in activation of the fibrinogen receptor integrin αIIbβ3, α-granule exocytosis, and aggregation, especially in response to the glycoprotein VI agonist convulxin. In contrast, δ-granule and lysosome exocytosis of Sept8-deficient platelets was comparable to wild-type platelets. Sept8-deficient platelet binding to immobilized fibrinogen under static conditions was diminished and spreading delayed. The procoagulant activity of Sept8-deficient platelets was reduced in response to convulxin as determined by lactadherin binding. Also thrombin generation was decreased relative to controls. Thus, Sept8 is required for efficient integrin αIIbβ3 activation, α-granule release, platelet aggregation, and contributes to platelet-dependent thrombin generation. These results revealed Sept8 as a modulator of distinct platelet functions involved in primary and secondary hemostatic processes.


Open Biology ◽  
2011 ◽  
Vol 1 (3) ◽  
pp. 110010 ◽  
Author(s):  
Clive Metcalfe ◽  
Peter Cresswell ◽  
Laura Ciaccia ◽  
Benjamin Thomas ◽  
A. Neil Barclay

Redox conditions change in events such as immune and platelet activation, and during viral infection, but the biochemical consequences are not well characterized. There is evidence that some disulfide bonds in membrane proteins are labile while others that are probably structurally important are not exposed at the protein surface. We have developed a proteomic/mass spectrometry method to screen for and identify non-structural, redox-labile disulfide bonds in leucocyte cell-surface proteins. These labile disulfide bonds are common, with several classes of proteins being identified and around 30 membrane proteins regularly identified under different reducing conditions including using enzymes such as thioredoxin. The proteins identified include integrins, receptors, transporters and cell–cell recognition proteins. In many cases, at least one cysteine residue was identified by mass spectrometry as being modified by the reduction process. In some cases, functional changes are predicted (e.g. in integrins and cytokine receptors) but the scale of molecular changes in membrane proteins observed suggests that widespread effects are likely on many different types of proteins including enzymes, adhesion proteins and transporters. The results imply that membrane protein activity is being modulated by a ‘redox regulator’ mechanism.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Bernd Jilma ◽  
Florian B Mayr ◽  
Alexander O Spiel ◽  
Patricia G Merlino ◽  
Harold N Marsh ◽  
...  

Background: ARC1779 is an aptamer which blocks the A1 domain binding of the vWF A1 domain to platelet GPIb receptors that is now in development for the treatment of AMI. vWF is increased in the elderly and in the setting of AMI, as reflected in higher vWF levels in circulation and in increased shear-dependent platelet function as measured by the platelet function analyzer (PFA-100) and cone and plate analyzer (IMPACT). Conventional therapy of AMI partially reduces platelet activation and aggregation, but does not address excessive vWF activity or platelet adhesion. Methods: We studied the ex vivo dose response curves for ARC1779 on PFA-100 and IMPACT platelet function tests, agonist-induced platelet aggregation, and vWF activity (free A1 domain sites) of patients with AMI on standard treatment including aspirin and clopidogrel (n=40), young (n=20) and elderly controls (n=20). Results: ARC1779 fully blocked collagen ADP induced platelet plug formation as measured by PFA-100 with an IC100 of ~ 1–2 mcg/mL with citrate anticoagulation, and 3–5 mcg/mL with hirudin anticoagulation. ARC1779 fully blocked shear-dependent platelet adhesion measured by the IMPACT analyzer with an IC100 of ~ 1 mcg/mL with citrate anticoagulation. In contrast to GPIIb/IIIa antagonists, ARC1779 did not inhibit platelet aggregation by ADP, collagen or arachidonic acid at concentrations (10mcg/mL) that fully inhibited vWF dependent platelet function. ARC1779 fully blocked vWF activity ex vivo with an IC90 of ~ 1 mcg/mL in young controls and 6 – 8 mcg/mL in STEMI and NSTEMI patients. Conclusions: ARC1779 potently and specifically inhibits vWF activity and vWF dependent platelet function, even in the setting of AMI where vWF activity is increased. ARC1779 represents a novel therapeutic principle (vWF antagonism) and a novel therapeutic class (aptamers). Potent and specific inhibition of VWF makes ARC1779 a promising development candidate for patients with AMI. Results


2004 ◽  
Vol 16 (2) ◽  
pp. 69 ◽  
Author(s):  
S. A. Coonrod ◽  
M. E. Calvert ◽  
P. P. Reddi ◽  
E. N. Kasper ◽  
L. C. Digilio ◽  
...  

In order to gain a deeper understanding of the molecular underpinnings of sperm–egg interaction and early development, we have used two-dimensional (2D) electrophoresis, avidin blotting and tandem mass spectrometry to identify, clone and characterise abundant molecules from the mouse egg proteome. Two-dimensional avidin blots of biotinylated zona-free eggs revealed an abundant approximately 75-kDa surface-labelled heterogeneous protein possessing a staining pattern similar to that of the zona pellucida glycoprotein, mouse ZP3 (mZP3). In light of this observation, we investigated whether mZP3 specifically localises to the plasma membrane of mature eggs. Zona pellucidae of immature mouse oocytes and mature eggs were removed using acid Tyrode’s solution, chymotrypsin or mechanical shearing. Indirect immunofluorescence using the mZP3 monoclonal antibody (mAb) IE-10 demonstrated strong continuous staining over the entire surface of immature oocytes and weak microvillar staining on ovulated eggs, regardless of the method of zona removal. Interestingly, in mature eggs, increased fluorescence intensity was observed following artificial activation and fertilisation, whereas little to no fluorescence was observed in degenerated eggs. The surface localisation of ZP3 on mature eggs was supported by the finding that the IE-10 mAb immunoprecipitated an approximate 75-kDa protein from lysates of biotinylated zona-free eggs. To further investigate the specificity of the localisation of mZP3 to the oolemma, indirect immunofluorescence was performed using the IE-10 mAb on both CV-1 and CHO cells transfected with full-length recombinant mZP3 (re-mZP3). Plasma membrane targeting of the expressed re-mZP3 protein was observed in both cell lines. The membrane association of re-mZP3 was confirmed by the finding that biotinylated re-mZP3 (approximately 75 kDa) is immunoprecipitated from the hydrophobic phase of Triton X-114 extracts of transfected cells following phase partitioning. Immunoprecipitation assays also demonstrated that surface re-mZP3 was released from transfected CV-1 in a time-dependent manner. These results demonstrate that ZP3 is specifically associated with the surface of mature eggs and its subsequent release from the cell surface may represent one mechanism by which ZP3 is secreted. Furthermore, the increase in ZP3 surface expression following fertilisation suggests that ZP3 may have a functional role during sperm–oolemma binding and fusion. These results also validate the usefulness of using the 2D proteomic approach to identify and characterise egg-surface proteins.


2020 ◽  
Author(s):  
Colin Peter Singer Kruse ◽  
Alexander D Meyers ◽  
Proma Basu ◽  
Sarahann Hutchinson ◽  
Darron R Luesse ◽  
...  

Abstract Background: Understanding of gravity sensing and response is critical to long-term human habitation in space and can provide new advantages for terrestrial agriculture. To this end, the altered gene expression profile induced by microgravity has been repeatedly queried by microarray and RNA-seq experiments to understand gravitropism. However, the quantification of altered protein abundance in space has been minimally investigated. Results: Proteomic (iTRAQ-labelled LC-MS/MS) and transcriptomic (RNA-seq) analyses simultaneously quantified protein and transcript differential expression of three-day old, etiolated Arabidopsis thaliana seedlings grown aboard the International Space Station along with their ground control counterparts. Protein extracts were fractionated to isolate soluble and membrane proteins and analyzed to detect differentially phosphorylated peptides. In total, 968 RNAs, 107 soluble proteins, and 103 membrane proteins were identified as differentially expressed. In addition, the proteomic analyses identified 16 differential phosphorylation events. Proteomic data delivered novel insights and simultaneously provided new context to previously made observations of gene expression in microgravity. There is a sweeping shift in post-transcriptional mechanisms of gene regulation including RNA-decapping protein DCP5, the splicing factors GRP7 and GRP8, and AGO4,. These data also indicate AHA2 and FERONIA as well as CESA1 and SHOU4 as central to the cell wall adaptations seen in spaceflight. Patterns of tubulin-a 1, 3,4 and 6 phosphorylation further reveal an interaction of microtubule and redox homeostasis that mirrors osmotic response signaling elements. The absence of gravity also results in a seemingly wasteful dysregulation of plastid gene transcription. Conclusions: The datasets gathered from Arabidopsis seedlings exposed to microgravity revealed marked impacts on post-transcriptional regulation, cell wall synthesis, redox/microtubule dynamics, and plastid gene transcription. The impact of post-transcriptional regulatory alterations represents an unstudied element of the plant microgravity response with the potential to significantly impact plant growth efficiency and beyond. What’s more, addressing the effects of microgravity on AHA2, CESA1, and alpha tubulins has the potential to enhance cytoskeletal organization and cell wall composition, thereby enhancing biomass production and growth in microgravity. Finally, understanding and manipulating the dysregulation of plastid gene transcription has further potential to address the goal of enhancing plant growth in the stressful conditions of microgravity.


Sign in / Sign up

Export Citation Format

Share Document