scholarly journals In-Silico Transcriptome Analyses of Hemostasis Triggers in Inflamed Vs Normal Mucosa of IBD Patients

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 19-20
Author(s):  
Enrica Branca ◽  
Giovanna Carrà ◽  
Isabella Russo ◽  
Massimo Terzolo ◽  
Angelo Guerrasio ◽  
...  

Background:inflammatory bowel disease (IBD) is characterized by chronic inflammation associated with an increased tendency to thrombosis and thromboembolic complications. The underlying mechanisms of VTE are not yet fully understood. Several studies reported different expressions of circulating procoagulant factors or fibrinolysis inhibitors in IBD. Others linked podoplanin overexpression with thrombosis, hypercoagulability, and increased risk of VTE. Here, we aimed to identify, among genes able to trigger thrombosis, those aberrantly expressed in IBD samples as compared with matched normal mucosa. Methods:we analyzed the transcriptome of matched normal and inflamed lesions in 168 patients with Adult Crohn Disease (CD) and 245 pediatric IBD using publicly available datasets. We intentionally assessed the expression levels of triggers and inhibitors of the coagulation system (Tissue Factor, TFI), the fibrinolytic system (PLAU, PLAT, PAI-1/2/3, TAFI, PN-1, SERPINF2, A2M, SNX1, SERPINC1) and platelets activation (podoplanin). Analyses were finally performed using additional datasets with 219 ulcerative colitis (UC) adult patients, 198 IBD patients and compared to normal colon transciptome. Results:in all datasets, when compared to matched normal mucosal transcriptome, CD and UC inflamed tissues over-expressed Podoplanin mRNA (p=2.46e-25). TF mRNA was also consistently up-regulated in inflamed mucosal of IBD patients, even if paralleled with up-regulation of TFPI as well, questioning on the functional role of TF in IBD. Among the regulators of the fibrinolytic system the urokinase-activator of the plasminogen is consistently deregulated in inflamed areas. Conclusion: our in-silico analyses on gene expression profiles, using matched normal and pathological mucosa of the same patients, suggested that IBD inflamed mucosa favors platelets activation due to podoplanin over-expression. These observations require further studies to assess the biological role of podoplanin in IBD patients and opens new insights on how to perform antithrombotic prophylaxis in IBD patients. Disclosures No relevant conflicts of interest to declare.

2011 ◽  
Vol 79 (5) ◽  
pp. 1848-1854 ◽  
Author(s):  
Emilie Courtine ◽  
Frédéric Pène ◽  
Nicolas Cagnard ◽  
Julie Toubiana ◽  
Catherine Fitting ◽  
...  

ABSTRACTNF-κB is a critical regulator of gene expression during severe infections. NF-κB comprises homo- and heterodimers of proteins from the Rel family. Among them, p50 and p65 have been clearly implicated in the pathophysiology of sepsis. In contrast, the role of cRel in sepsis is still controversial and has been poorly studied in single-pathogen infections. We aimed to investigate the consequences of cRel deficiency in a cecal ligation and puncture (CLP) model of sepsis. We have approached the underlying mechanisms of host defense by analyzing bacterial clearance, systemic inflammation, and the distribution of spleen dendritic cell subsets. Moreover, by using a genome-wide technology, we have also analyzed the CLP-induced modifications in gene expression profiles both in wild-type (wt) and inrel−/−mice. The absence of cRel enhances mortality due to polymicrobial sepsis. Despite normal pathogen clearance, cRel deficiency leads to an altered systemic inflammatory response associated with a sustained loss of the spleen lymphoid dendritic cells. Furthermore, a whole-blood microarray study reveals that the differential outcome between wt andrel−/−mice during sepsis is preceded by remarkable changes in the expression of hundreds of genes involved in aspects of host-pathogen interaction, such as host survival and lipid metabolism. In conclusion, cRel is a key NF-κB member required for host antimicrobial defenses and a regulatory transcription subunit that controls the inflammatory and immune responses in severe infection.


Author(s):  
Sarah McCarrick ◽  
Valentin Romanovski ◽  
Zheng Wei ◽  
Elin M. Westin ◽  
Kjell-Arne Persson ◽  
...  

AbstractWelders are daily exposed to various levels of welding fumes containing several metals. This exposure can lead to an increased risk for different health effects which serves as a driving force to develop new methods that generate less toxic fumes. The aim of this study was to explore the role of released metals for welding particle-induced toxicity and to test the hypothesis that a reduction of Cr(VI) in welding fumes results in less toxicity by comparing the welding fume particles of optimized Cr(VI)-reduced flux-cored wires (FCWs) to standard FCWs. The welding particles were thoroughly characterized, and toxicity (cell viability, DNA damage and inflammation) was assessed following exposure to welding particles as well as their released metal fraction using cultured human bronchial epithelial cells (HBEC-3kt, 5–100 µg/mL) and human monocyte-derived macrophages (THP-1, 10–50 µg/mL). The results showed that all Cr was released as Cr(VI) for welding particles generated using standard FCWs whereas only minor levels (< 3% of total Cr) were released from the newly developed FCWs. Furthermore, the new FCWs were considerably less cytotoxic and did not cause any DNA damage in the doses tested. For the standard FCWs, the Cr(VI) released in cell media seemed to explain a large part of the cytotoxicity and DNA damage. In contrast, all particles caused rather similar inflammatory effects suggesting different underlying mechanisms. Taken together, this study suggests a potential benefit of substituting standard FCWs with Cr(VI)-reduced wires to achieve less toxic welding fumes and thus reduced risks for welders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Luo ◽  
Jun Yin ◽  
Denise Dwyer ◽  
Tracy Yamawaki ◽  
Hong Zhou ◽  
...  

AbstractHeart failure with reduced ejection fraction (HFrEF) constitutes 50% of HF hospitalizations and is characterized by high rates of mortality. To explore the underlying mechanisms of HFrEF etiology and progression, we studied the molecular and cellular differences in four chambers of non-failing (NF, n = 10) and HFrEF (n = 12) human hearts. We identified 333 genes enriched within NF heart subregions and often associated with cardiovascular disease GWAS variants. Expression analysis of HFrEF tissues revealed extensive disease-associated transcriptional and signaling alterations in left atrium (LA) and left ventricle (LV). Common left heart HFrEF pathologies included mitochondrial dysfunction, cardiac hypertrophy and fibrosis. Oxidative stress and cardiac necrosis pathways were prominent within LV, whereas TGF-beta signaling was evident within LA. Cell type composition was estimated by deconvolution and revealed that HFrEF samples had smaller percentage of cardiomyocytes within the left heart, higher representation of fibroblasts within LA and perivascular cells within the left heart relative to NF samples. We identified essential modules associated with HFrEF pathology and linked transcriptome discoveries with human genetics findings. This study contributes to a growing body of knowledge describing chamber-specific transcriptomics and revealed genes and pathways that are associated with heart failure pathophysiology, which may aid in therapeutic target discovery.


2015 ◽  
Vol 11 (1) ◽  
pp. 86-96 ◽  
Author(s):  
Aakash Chavan Ravindranath ◽  
Nolen Perualila-Tan ◽  
Adetayo Kasim ◽  
Georgios Drakakis ◽  
Sonia Liggi ◽  
...  

Integrating gene expression profiles with certain proteins can improve our understanding of the fundamental mechanisms in protein–ligand binding.


2020 ◽  
Author(s):  
Wenying Yu ◽  
Mei Lin ◽  
Minghui Peng ◽  
Huijuan Yan ◽  
Jie Zhou ◽  
...  

AbstractPeroxisomes are ubiquitous organelles in eukaryotic cells that fulfill various important metabolic functions. In this study, we investigated the role of Docking/Translocation Module (DTM) peroxins, mainly FvPex8, FvPex13, FvPex14, and FvPex33, in Fusarium verticillioides virulence and fumonisin B1 (FB1) biosynthesis. Protein interaction experiments suggested that FvPex13 serves as the core subunit of F. verticillioides DTM. When we generated gene deletion mutants (ΔFvpex8, ΔFvpex13, ΔFvpex14, ΔFvpex33, ΔFvpex33/14) and examined whether the expression of other peroxin genes were affected in the DTM mutants, ΔFvpex8 strain showed most drastic changes to PEX gene expression profiles. Deletion mutants exhibited disparity in carbon source utilization and defect in cell wall integrity when stress agents were applied. Under nutrient starvation, mutants also showed higher levels of lipid droplet accumulation. Notably, ΔFvpex8 mutant showed significant FB1 reduction and altered expression of FUM1 and FUM19 genes. However, FvPex13 was primarily responsible for virulence, while ΔFvpex33/14 double mutant also showed virulence defect. In summary, our study suggests that FvPex13 is the core component of DTM, regulating peroxisome membrane biogenesis as well as PTS1- and PTS2-mediated transmembrane cargo transportation. Importantly, we predict FvPex8 as a key component in DTM that affects peroxisome function in FB1 biosynthesis in F. verticillioides.


2020 ◽  
Author(s):  
Xiaorui Xu ◽  
Jingya Xu ◽  
Chen Yuan ◽  
Yikai Hu ◽  
Qinggang Liu ◽  
...  

Abstract BackgroundThe TGA family has ten members and plays vital roles in plant defence and development in Arabidopsis. However, involvement of TGAs in control of flowering time remains largely unknown and requires further investigation. ResultsTo study the role of TGA7 during the floral transition, we first tested phenotypes of tga7 mutant, which displayed delay-flowering phenotype under both long-day and short-day conditions. We then performed flowering genetic pathways analysis and found that both autonomous and thermosensory pathways may affect TGA7 expression. Furthermore, to reveal differential gene expression profiles between wild-type (WT) and tga7, cDNA libraries were generated for WT and tga7 mutant seedlings at 9 DAG (days after germination). For each library, deep-sequencing produced approximately 6.67 Gb of high-quality sequences with the majority (84.55%) of mRNAs between 500 and 3000 nucleotides in length. Three hundred and twenty-five differentially expressed genes (DEGs) were identified between WT and tga7 mutant seedlings. Among them, four genes are associated with flowering time control. Differential expression of the four flowering-related DEGs was further validated by qRT-PCR.ConclusionsTransciptomic sequencing coupled with flowering genetic pathways analysis provides a framework for further studying the role of TGA7 in promoting flowering.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-42
Author(s):  
Xiaoli Liu ◽  
Dongyue Zhang ◽  
Hao Wang ◽  
Qian Ren ◽  
Lina Wang ◽  
...  

Macrophages are important member in tissue microenvironments and play diverse physiologic and pathologic roles. Leukemia associated macrophages (LAM) are a kind of specifically activated macrophages in leukemia microenvironment, which are different from M1, M2 and TAMs. We have reported the heterogeneities in gene expression profiles of LAMs. However, MicroRNA expression profiles of LAMs and regulatory mechanism are still unknown. Here, a MLL-AF9 induced mouse acute myeloid leukemia (AML) model was used, and LAMs in the spleen and bone marrow were sorted for microRNA sequencing. The microRNA expression profiles of LAMs in bone marrow and spleen in AML mice were different from macrophages from control mice. Based on the volcano plot, more than 100 microRNAs were differentially expressed in LAMs compared with macrophages in control mice. Next, five differentially expressed microRNAs were selected and verified by qRT-PCR in LAMs from spleen. The results showed that miR-451a and miR-155-5p in spleen LAMs were significantly upregulated in LAMs from spleen. Overexpression of miR-451a altered the morphology of macrophages, enhanced the phagocytic ability of macrophages, and promotes the expression of macrophage differentiation marker CD11b. Furthermore, overexpression of miR-451a had little effect on M0 macrophages, but increased the proliferation capacity of macrophages upon stimulation toward M1 or M2 phenotype. MiR-451a overexpressed-macrophages had higher level of iNOS when stimulated with LPS or IL-4 whereas there was no difference in the expression of IL-1β, IL-6, CD206 and Arg-1 between MiR-451a overexpressed-macrophages and control macrophage. Therefore, our data revealed the characteristics of the microRNA expression profile of LAMs for the first time, and verified the effect of miR-451a on macrophage in vitro. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Xiangtao Li ◽  
Shaochuan Li ◽  
Lei Huang ◽  
Shixiong Zhang ◽  
Ka-chun Wong

Abstract Single-cell RNA sequencing (scRNA-seq) technologies have been heavily developed to probe gene expression profiles at single-cell resolution. Deep imputation methods have been proposed to address the related computational challenges (e.g. the gene sparsity in single-cell data). In particular, the neural architectures of those deep imputation models have been proven to be critical for performance. However, deep imputation architectures are difficult to design and tune for those without rich knowledge of deep neural networks and scRNA-seq. Therefore, Surrogate-assisted Evolutionary Deep Imputation Model (SEDIM) is proposed to automatically design the architectures of deep neural networks for imputing gene expression levels in scRNA-seq data without any manual tuning. Moreover, the proposed SEDIM constructs an offline surrogate model, which can accelerate the computational efficiency of the architectural search. Comprehensive studies show that SEDIM significantly improves the imputation and clustering performance compared with other benchmark methods. In addition, we also extensively explore the performance of SEDIM in other contexts and platforms including mass cytometry and metabolic profiling in a comprehensive manner. Marker gene detection, gene ontology enrichment and pathological analysis are conducted to provide novel insights into cell-type identification and the underlying mechanisms. The source code is available at https://github.com/li-shaochuan/SEDIM.


2019 ◽  
Vol 20 (12) ◽  
pp. 3073 ◽  
Author(s):  
Ana Dienstbier ◽  
Fabian Amman ◽  
Daniel Štipl ◽  
Denisa Petráčková ◽  
Branislav Večerek

Bordetella pertussis is a Gram-negative strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Previously, we have shown that RNA chaperone Hfq is required for virulence of B. pertussis. Furthermore, microarray analysis revealed that a large number of genes are affected by the lack of Hfq. This study represents the first attempt to characterize the Hfq regulon in bacterial pathogen using an integrative omics approach. Gene expression profiles were analyzed by RNA-seq and protein amounts in cell-associated and cell-free fractions were determined by LC-MS/MS technique. Comparative analysis of transcriptomic and proteomic data revealed solid correlation (r2 = 0.4) considering the role of Hfq in post-transcriptional control of gene expression. Importantly, our study confirms and further enlightens the role of Hfq in pathogenicity of B. pertussis as it shows that Δhfq strain displays strongly impaired secretion of substrates of Type III secretion system (T3SS) and substantially reduced resistance to serum killing. On the other hand, significantly increased production of proteins implicated in transport of important metabolites and essential nutrients observed in the mutant seems to compensate for the physiological defect introduced by the deletion of the hfq gene.


Sign in / Sign up

Export Citation Format

Share Document