High-Resolution Binding Atlas of U2AF1 Mutants Uncovers New Complexity in Splicing Alterations and Kinetics in Myeloid Malignancies

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 3-4
Author(s):  
Giulia Biancon ◽  
Poorval Joshi ◽  
Torben Hunck ◽  
Josh Zimmer ◽  
Yimeng Gao ◽  
...  

Spliceosomal gene mutations function as drivers of hematologic malignancies and other cancers with an occurrence of more than 50% in myelodysplastic syndromes and secondary acute myeloid leukemia. Hotspot mutations S34F and Q157R in the two zinc finger domains of the splicing factor U2AF1, forming with U2AF2 the U2AF complex that recognizes 3' splice site (3'SS) of U2 introns, alter exon usage in a sequence-specific manner. However, how pathological U2AF1 mutations disrupt ordered splicing, from binding to recruitment of cooperating RNA binding proteins and ultimately splicing kinetics, is still not known at the molecular level. To obtain unique insights into in vivo RNA binding mechanisms, we performed fractionated enhanced crosslinking immunoprecipitation coupled with deep RNA sequencing (freCLIP-seq) on human erythroleukemia (HEL) cells expressing wild-type (WT) or mutant (S34F, Q157R) U2AF1. Transcriptome-wide analysis of binding at single nucleotide resolution in light and heavy fractions, corresponding respectively to U2AF1 only and U2AF complex, allowed to: i) deconvolute U2AF1 signal peaking over the AG dinucleotide at the intronic end of the 3'SS region, and U2AF2 signal sitting on the adjacent polypyrimidine tract (PPT); ii) identify conformational changes in mutant U2AF1 binding with a novel peak in position -3 of the 3'SS region for S34F and in position +1 for Q157R. Alternative splicing analysis on newly collected RNA-seq data showed that less included exons present higher probability of U in position -3 for S34F and A in position +1 for Q157R, pinpointing a match with nucleotide positions affected by aberrant binding in freCLIP-seq. In both U2AF1 mutants, aberrant binding and splicing mechanisms affected genes involved in mRNA processing and transport (P-value<0.01) highlighting the involvement of U2AF1 mutations in the dysregulation of these key biological processes. We then performed a combined analysis of differential binding and aberrant splicing in U2AF1 mutants vs WT considering 4 categories: ">inclusion/>binding", "<inclusion/<binding", "<inclusion/>binding", ">inclusion/<binding". The first 2 categories correspond to the loss-of-function binding model suggested in literature to explain the splicing outcome of U2AF1 mutations: U2AF1 mutants bind certain splicing junctions with less affinity, leading to their exclusion. The last 2 categories represent a non-canonical gain-of-function model where increased mutant U2AF1 binding results in the impairment of the splicing machinery. Surprisingly, while Q157R mainly exhibited a loss-of-function mechanism where ineffective splicing is related to absence of binding ("<inclusion/<binding", 51.1%), S34F mostly follows a gain-of-function mechanism affecting splicing progression by an increased, yet skewed, binding. The most represented category was, indeed, "<inclusion/>binding" with 123 events out of 309 (Figure 1A). Moreover, differential binding was not dependent on specific nucleotides in position -3: events characterized by increased S34F binding (Figure 1B, top), as well as events characterized by decreased S34F binding (Figure 1B, bottom), showed -3U in less included exons or -3C in more included exons. The binding analysis across the 4 categories showed that increased S34F binding was associated with reduced U2AF2 binding (Figure 1C, top) particularly in less included exons, while decreased S34F binding was associated with increased U2AF2 binding (Figure 1C, bottom) especially in more included exons. Finally, analysis of branch point and splice junction features revealed that PPT strength influences the splicing outcome with "<inclusion/>binding" category characterized by a weak PPT that impairs U2AF2 binding in the presence of skewed U2AF1 S34F binding (Figure 1D). Additionally, transcriptome-wide RNA kinetics analysis by TimeLapse-seq demonstrated that U2AF1 S34F and Q157R, compared to WT, globally decrease synthesis of aberrantly spliced and bound 3'SS regions. Of note, this shutdown effect was particularly evident in the downstream exons pointing towards a role of U2AF1 mutations in a widespread alteration of RNA synthesis and splicing dynamics. Collectively, these results disclose novel molecular mechanisms of pathogenic U2AF1 mutations in the context of myeloid malignancies and provide the basis for the development of effective U2AF1 directed therapeutic strategies. Disclosures Hunck: Boehringer Ingelheim Fonds: Other: MD Fellowship.

2020 ◽  
Vol 26 (10) ◽  
pp. 727-737
Author(s):  
Roseanne Rosario ◽  
Richard Anderson

Abstract The FMR1 gene contains a polymorphic CGG trinucleotide sequence within its 5′ untranslated region. More than 200 CGG repeats (termed a full mutation) underlie the severe neurodevelopmental condition fragile X syndrome, while repeat lengths that range between 55 and 200 (termed a premutation) result in the conditions fragile X-associated tremor/ataxia syndrome and fragile X-associated premature ovarian insufficiency (FXPOI). Premutations in FMR1 are the most common monogenic cause of premature ovarian insufficiency and are routinely tested for clinically; however, the mechanisms that contribute to the pathology are still largely unclear. As studies in this field move towards unravelling the molecular mechanisms involved in FXPOI aetiology, we review the evidence surrounding the two main theories which describe an RNA toxic gain-of-function mechanism, resulting in the loss of function of RNA-binding proteins, or a protein-based mechanism, where repeat-associated non-AUG translation leads to the formation of an abnormal polyglycine containing protein, called FMRpolyG.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fei Long ◽  
Zhi Lin ◽  
Liang Li ◽  
Min Ma ◽  
Zhixing Lu ◽  
...  

AbstractColorectal cancer (CRC) is a common hereditary tumor that is often fatal. Its pathogenesis involves multiple genes, including circular RNAs (circRNAs). Notably, circRNAs constitute a new class of noncoding RNAs (ncRNAs) with a covalently closed loop structure and have been characterized as stable, conserved molecules that are abundantly expressed in tissue/development-specific patterns in eukaryotes. Based on accumulating evidence, circRNAs are aberrantly expressed in CRC tissues, cells, exosomes, and blood from patients with CRC. Moreover, numerous circRNAs have been identified as either oncogenes or tumor suppressors that mediate tumorigenesis, metastasis and chemoradiation resistance in CRC. Although the regulatory mechanisms of circRNA biogenesis and functions remain fairly elusive, interesting results have been obtained in studies investigating CRC. In particular, the expression of circRNAs in CRC is comprehensively modulated by multiple factors, such as splicing factors, transcription factors, specific enzymes and cis-acting elements. More importantly, circRNAs exert pivotal effects on CRC through various mechanisms, including acting as miRNA sponges or decoys, interacting with RNA binding proteins, and even translating functional peptides. Finally, circRNAs may serve as promising diagnostic and prognostic biomarkers and potential therapeutic targets in the clinical practice of CRC. In this review, we discuss the dysregulation, functions and clinical significance of circRNAs in CRC and further discuss the molecular mechanisms by which circRNAs exert their functions and how their expression is regulated. Based on this review, we hope to reveal the functions of circRNAs in the initiation and progression of cancer and highlight the future perspectives on strategies targeting circRNAs in cancer research.


2011 ◽  
Vol 22 (16) ◽  
pp. 2875-2885 ◽  
Author(s):  
Mai Nguyen Chi ◽  
Jacques Auriol ◽  
Bernard Jégou ◽  
Dimitris L. Kontoyiannis ◽  
James M.A. Turner ◽  
...  

Posttranscriptional mechanisms are crucial to regulate spermatogenesis. Accurate protein synthesis during germ cell development relies on RNA binding proteins that control the storage, stability, and translation of mRNAs in a tightly and temporally regulated manner. Here, we focused on the RNA binding protein Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) known to be a key regulator of posttranscriptional regulation in somatic cells but the function of which during gametogenesis has never been investigated. In this study, we have used conditional loss- and gain-of-function approaches to address this issue in mice. We show that targeted deletion of HuR specifically in germ cells leads to male but not female sterility. Mutant males are azoospermic because of the extensive death of spermatocytes at meiotic divisions and failure of spermatid elongation. The latter defect is also observed upon HuR overexpression. To elucidate further the molecular mechanisms underlying spermatogenesis defects in HuR-deleted and -overexpressing testes, we undertook a target gene approach and discovered that heat shock protein (HSP)A2/HSP70-2, a crucial regulator of spermatogenesis, was down-regulated in both situations. HuR specifically binds hspa2 mRNA and controls its expression at the translational level in germ cells. Our study provides the first genetic evidence of HuR involvement during spermatogenesis and reveals Hspa2 as a target for HuR.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mandana Ameli-Mojarad ◽  
Melika Ameli-Mojarad ◽  
Mahrooyeh Hadizadeh ◽  
Chris Young ◽  
Hosna Babini ◽  
...  

AbstractColorectal cancer (CRC) is the 3rd most common type of cancer worldwide. Late detection plays role in one-third of annual mortality due to CRC. Therefore, it is essential to find a precise and optimal diagnostic and prognostic biomarker for the identification and treatment of colorectal tumorigenesis. Covalently closed, circular RNAs (circRNAs) are a class of non-coding RNAs, which can have the same function as microRNA (miRNA) sponges, as regulators of splicing and transcription, and as interactors with RNA-binding proteins (RBPs). Therefore, circRNAs have been investigated as specific targets for diagnostic and prognostic detection of CRC. These non-coding RNAs are also linked to metastasis, proliferation, differentiation, migration, angiogenesis, apoptosis, and drug resistance, illustrating the importance of understanding their involvement in the molecular mechanisms of development and progression of CRC. In this review, we present a detailed summary of recent findings relating to the dysregulation of circRNAs and their potential role in CRC.


2021 ◽  
Author(s):  
Keisuke Hitachi ◽  
Yuri Kiyofuji ◽  
Masashi Nakatani ◽  
Kunihiro Tsuchida

RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of hnRNPK for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level via binding to Myoparr. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays multiple lncRNA-dependent and -independent roles in the inhibition of myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.


2017 ◽  
Vol 114 (50) ◽  
pp. E10736-E10744 ◽  
Author(s):  
Ryosuke Kita ◽  
Sandeep Venkataram ◽  
Yiqi Zhou ◽  
Hunter B. Fraser

Genetic variants affecting gene-expression levels are a major source of phenotypic variation. The approximate locations of these variants can be mapped as expression quantitative trait loci (eQTLs); however, a major limitation of eQTLs is their low resolution, which precludes investigation of the causal variants and their molecular mechanisms. Here we report RNA-seq and full genome sequences for 85 diverse isolates of the yeast Saccharomyces cerevisiae—including wild, domesticated, and human clinical strains—which allowed us to perform eQTL mapping with 50-fold higher resolution than previously possible. In addition to variants in promoters, we uncovered an important role for variants in 3′UTRs, especially those affecting binding of the PUF family of RNA-binding proteins. The eQTLs are predominantly under negative selection, particularly those affecting essential genes and conserved genes. However, applying the sign test for lineage-specific selection revealed the polygenic up-regulation of dozens of biofilm suppressor genes in strains isolated from human patients, consistent with the key role of biofilms in fungal pathogenicity. In addition, a single variant in the promoter of a biofilm suppressor, NIT3, showed the strongest genome-wide association with clinical origin. Altogether, our results demonstrate the power of high-resolution eQTL mapping in understanding the molecular mechanisms of regulatory variation, as well as the natural selection acting on this variation that drives adaptation to environments, ranging from laboratories to vineyards to the human body.


Author(s):  
Nicole J. Curtis ◽  
Constance J. Jeffery

RNA binding proteins play key roles in many aspects of RNA metabolism and function, including splicing, transport, translation, localization, stability and degradation. Within the past few years, proteomics studies have identified dozens of enzymes in intermediary metabolism that bind to RNA. The wide occurrence and conservation of RNA binding ability across distant branches of the evolutionary tree suggest that these moonlighting enzymes are involved in connections between intermediary metabolism and gene expression that comprise far more extensive regulatory networks than previously thought. There are many outstanding questions about the molecular structures and mechanisms involved, the effects of these interactions on enzyme and RNA functions, and the factors that regulate the interactions. The effects on RNA function are likely to be wider than regulation of translation, and some enzyme–RNA interactions have been found to regulate the enzyme's catalytic activity. Several enzyme–RNA interactions have been shown to be affected by cellular factors that change under different intracellular and environmental conditions, including concentrations of substrates and cofactors. Understanding the molecular mechanisms involved in the interactions between the enzymes and RNA, the factors involved in regulation, and the effects of the enzyme–RNA interactions on both the enzyme and RNA functions will lead to a better understanding of the role of the many newly identified enzyme–RNA interactions in connecting intermediary metabolism and gene expression.


2016 ◽  
Vol 23 (5) ◽  
pp. 466-477 ◽  
Author(s):  
Enrique Lara-Pezzi ◽  
Manuel Desco ◽  
Alberto Gatto ◽  
María Victoria Gómez-Gaviro

The complexity of the mammalian brain requires highly specialized protein function and diversity. As neurons differentiate and the neuronal circuitry is established, several mRNAs undergo alternative splicing and other posttranscriptional changes that expand the variety of protein isoforms produced. Recent advances are beginning to shed light on the molecular mechanisms that regulate isoform switching during neurogenesis and the role played by specific RNA binding proteins in this process. Neurogenesis and neuronal wiring were recently shown to also be regulated by RNA degradation through nonsense-mediated decay. An additional layer of regulatory complexity in these biological processes is the interplay between alternative splicing and long noncoding RNAs. Dysregulation of posttranscriptional regulation results in defective neuronal differentiation and/or synaptic connections that lead to neurodevelopmental and psychiatric disorders.


Author(s):  
Denis Furling

Myotonic dystrophy of type 1 (DM1) is one of the most common muscular dystrophy in adults characterized by progressive muscle wasting and weakness, myotonia, cardiac conduction defects, alteration in cognitive functions as well as several other multisystemic symptoms. DM1 is an autosomal dominant inherited disease caused by an unstable CTG expansion ranging from ~50 to more than 1,000 repeats in the 3’ non-coding region of the DMPK gene. Expression of DMPK RNAs with expanded CUG repeats supports a toxic RNA gain-of-function as a pathologic mechanism for DM1. A similar or common mechanism may also be involved in DM type 2 that is caused by CCTG expansion in the first intron of the CNP (ZNF9) gene and shares similar clinical features with DM1 disease. In both myotonic dystrophies, nuclear accumulation of pathogenic CUG/CCUGexp-RNAs alters the activities of the RNA binding proteins such as MBNL1 and CUG-BP1 that leads to alternative splicing mis-regulation of a numerous of transcripts in DM tissues and ultimately, to clinical features of the disease. An overview of the DM splicing mis-regulation will be presented, with focus on mis- regulation of the BIN1 mRNA. In muscle, BIN1 plays an important role in tubular invaginations of the plasma membrane and is required for biogenesis of T-tubules, which are specialized membrane structures essential for excitation-contraction coupling. BIN1 splicing mis-regulation in DM patients due to MBNL1 loss-of-function results in the expression of an inactive form of BIN1 deprived of phosphoinositide-binding and membrane-tubulating activities. Reproducing similar BIN1 mis-splicing defect in the muscles of wild type mice is sufficient to promote T-tubule alterations and muscle strength decrease, suggesting that alteration of BIN1 splicing may contributes to muscle weakness, a prominent feature in DM.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Greco ◽  
A Made' ◽  
M Longo ◽  
R Tikhomirov ◽  
S Castelvecchio ◽  
...  

Abstract Background Circular RNAs (circRNAs) are an emerging class of noncoding RNAs stemming from the splicing and circularization of pre-mRNAs exons. CircRNAs can regulate transcription and splicing, sequester microRNAs acting as “sponge” and inducing the respective targets, and bind to RNA binding proteins. Recently, they have been found deregulated in dilated cardiomyopathies (DCM), one of the cardiovascular diseases with the worst rate of morbidity and mortality, and whose molecular mechanisms are only partially known. Purpose Therein, we will evaluate in ischemic DCM patients the modulation of 17 circRNAs, 14 out of them obtained from literature data on DCM ischemic or not, while the other 3 were circRNAs not characterized in the heart previously. The study aims to identify circRNAs candidates for further functional characterization in DCM. In addition, as differential expression (DE) analysis is not easily performed for circRNAs in RNA-seq datasets, the validated circRNAs will be used to set up the most specific and sensitive bioinformatics pipeline for circRNA-DE analysis. Methods We designed divergent and convergent specific primers for 17 circRNAs and their host gene, respectively, and their amplification efficiency was measured by RT-qPCR. Transcripts expression was measured in left ventricle biopsies of 12 patients affected by non end-stage ischemic HF and of 12 matched controls. Results We identified cPVT1, cANKRD17, cBPTF as DE, and validated the modulation of 5 out of the 14 DCM-related circRNAs (cHIPK3, cALPK2, cPCMTD1, cNEBL, cSLC8A1), while cPDRM5, cTTN1 showed opposite modulation, which may be due to the specific disease condition. All of them were modulated differently from the respective host gene. CircRNA/miRNA interactions were predicted using Starbase 3.0. Next, mRNAs-targets of the identified miRNAs were predicted by mirDIP 4.1 and intersected with gene expression datasets of the same patients, previously obtained by microarray analysis. We found that cBPTF and cANKRD17 might sponge 12 and 2 miRNAs, respectively. Enrichment analysis of the relevant targets identified several important pathways implicated in DCM, such as MAPK, FoxO, EGFR, VEGF and Insulin/IGF pathways. In addition, deep RNA-Seq analysis that is currently ongoing and the validated circRNAs will be used to optimize the bioinformatics pipeline for circRNA DE analysis. Conclusions We identified a subset of circRNAs deregulated in ischemic HF potentially implicated in HF pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document