scholarly journals A Novel B Cell Antigen Designated Lambda Myeloma Antigen (LMA) Has Been Identified Using Two Fully Human Monoclonal Antibodies (Mabs) That Bind to Similar Epitopes on Plasma Cells from Patients with Plasma Cell Dyscrasias

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1595-1595
Author(s):  
Mary Sartor ◽  
Daniel Y Hu ◽  
Thomas X Lemarchand ◽  
Luise Britz ◽  
Rosanne Dunn ◽  
...  

Abstract Introduction: The novel kappa (κ) myeloma antigen (KMA) has been described and a specific monoclonal antibody KappaMab (formerly MDX-1097) developed which is currently in a Phase IIb clinical trial. In this study 2 human LambdaMabs (10B3 and 7F11) were shown to specifically bind to a conformational epitope in the lambda (λ) light chain constant region when it is held in non-covalent association with lipids in the cell membrane (LMA). The 10B3 Mab binds to all λ isotypes and 7F11 binds to isotypes 2 and 3; neither antibody binds κ light chain or immunoglobulin (Igλ or Igκ). Methods: To detect LMA on λ+ myeloma cell lines and on λ-restricted patient bone marrow (BM) samples, 7F11 and 10B3 Fab'2 fragments were conjugated to APC and R-PE and used to stain the λ myeloma cell lines LP-1, RPMI8226 and OPM-2 followed by flow cytometry analysis. KappaMab Fab'2 (KMA Fab'2) and the κ myeloma cell line JJN3 were used as a negative control and to identify KMA on κ-restricted patient BM samples. Patient BM samples (κ=43 and λ=22) included Monoclonal Gammopathy of Undetermined Significance (MGUS), untreated and treated multiple myeloma (MM) patients, AL amyloidosis, plasmacytoma and Waldenstroms macroglobulinemia (WM). Multiparametric FCM immunophenotyping was performed with the 10B3 Fab'2 fragments and CD38, CD138, CD269 (BCMA), CD319 (SLAM F7), CD56 and CD45 Mabs. Plasma cells (PCs) were identified by the co-expression of CD38 and CD138, then CD138+/CD38+ gated cells were analyzed for 10B3 or KMA, CD269, CD319, and CD56. KMA and LMA Fab'2 fragments were used as negative controls for each other. The antigen density of KMA or LMA versus BCMA on PCs in 55 samples was assessed using Quantibrite beads. Immunohistochemistry (ICH) tissue cross-reactivity studies using validated automated methods on tissue with whole antibody 7F11-biotin and 10B3-FITC were performed on MM cell lines, λ myeloma lung tissue (plasmacytoma) and a panel of 38 normal human tissues. Serial sections from snap frozen blocks were used to retain the conformational epitope and then stained with the λ Mabs and visualised by light microscopy. Results: The conjugated 10B3 Fab'2 fragment bound to LMA-expressing cell lines LP-1, RPMI8226 and OPM-2 (isotypes 1-3) and 7F11 bound to RPMI8226 and OPM-2, (isotypes 2-3); neither bound JJN3. KMA Fab'2 did not bind to λ myeloma cell lines but bound JJN3. Expression profiles for patient BM samples (Table 1) showed KMA was expressed on PCs from untreated (N=9/17; 53%) and treated (N=8/11; 73%) MM samples, whereas BCMA expression was 88% (N=15/17) and 82% (N=9/11) respectively. BM PCs from all 3 plasmacytoma cases and 1 WM case were positive for both KMA and BCMA. BM PCs from MGUS cases were all positive for BCMA and positive for KMA in half the cases studied. The expression of KMA and CD56 was highest on PCs from treated MM patient samples. Antigen density for KMA and BCMA was similar in the untreated patients. In treated patients KMA density was higher than BCMA, other samples had lower antigen density of both KMA and BCMA. LMA (Table 2) and BCMA were expressed on 50% and 90% of untreated MM samples and all LMA+ samples co-expressed BCMA but only 1 co-expressed CD56. All treated λMM samples expressed BCMA and 60% expressed LMA. LMA was positive on PCs from the 3 amyloidosis samples, BCMA was expressed weakly in only 1 of these whereas CD56 was always co-expressed with LMA. MGUS and WM samples did not express LMA. Similar to KMA, the antigen density of LMA and BCMA was equivalent in untreated patients but in treated patients LMA density was higher than BCMA. All 3 amyloidosis samples were λ isotype. IHC results showed that 10B3 and 7F11 bound to myeloma cell lines and 10B3 bound to PCs in λ plasmacytoma sections. Both Mabs bound occasional PCs or dendritic cells in the GI tract mucosa, tonsil and various secondary lymphoid organs. No off-target binding of 10B3 and 7F11 was observed and both antibodies bound occasional PCs in secondary lymphoid tissue. Conclusion: These studies used mostly myeloma samples and a small number of other plasma cell dyscrasias. Nevertheless expression of KMA and LMA was identified on PCs across the spectrum of disease. Within the treated patient cohort the antigen density of KMA or LMA was higher than that of BCMA and implies there is an enrichment of these novel antigens in relapsed refractory myeloma. No off-target binding was observed in normal human tissues and binding was limited to occasional leukocytes in secondary lymphoid tissue. Figure 1 Figure 1. Disclosures Hu: HaemaLogiX Pty Ltd: Current Employment. Dunn: HaemaLogiX Pty Ltd: Current Employment.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1836-1836
Author(s):  
Sally A. Hunsucker ◽  
Valeria Magarotto ◽  
Jairo A. Matthews ◽  
Michael Wang ◽  
Veerabhadran Baladandayuthapani ◽  
...  

Abstract Abstract 1836 Poster Board I-862 Background: The neutralizing anti-interleukin (IL)-6 monoclonal antibody (MAb) CNTO 328 acts in an additive to synergistic manner to enhance the activity of bortezomib and dexamethasone against models of multiple myeloma by suppressing several IL-6-induced anti-apoptotic signaling pathways. We therefore sought to evaluate the possibility that blockade of IL-6 signaling could also augment the activity of melphalan, and to determine the potential mechanisms underlying this interaction. Methods: A panel of myeloma cell lines was studied both in suspension and with bone marrow stromal cells to evaluate the activity of CNTO 328 with and without melphalan. The CNTO 328 + melphalan combination was also tested in primary cells from patients with a variety of plasma cell dyscrasias. Results: Treatment of IL-6-dependent KAS-6/1, INA-6, and ANBL-6 myeloma cell lines with CNTO 328 + melphalan reduced plasma cell viability in an additive-to-synergistic manner compared to melphalan with a control MAb. Isobologram analysis demonstrated that the combination was synergistic in KAS-6/1 cells regardless of the sequence of drug treatment (combination indices (CIs) from 0.275-0.607), although the strongest synergy was seen with CNTO 328 pretreatment (CIs from 0.275-0.493). These anti-proliferative effects were accompanied by an enhanced activation of drug-specific apoptosis, and this increased cell death was not rescued by the trophic effects of co-culture of plasma cells with the human-derived stromal cell line HS-5. CNTO 328 increased melphalan-mediated induction of both extrinsic, caspase-8-mediated apoptosis, as well as intrinsic, caspase-9-mediated death, which converged to produce increased levels of caspase-3 activity. Apoptosis was enhanced in part by CNTO 328-stimulated cleavage of Bid to tBid, and alterations in the phosphorylation status of BimEL, as well as increased conversion of Bak and, to a lesser extent, of Bax, to their active forms. Neutralization of IL-6 by CNTO 328 also suppressed signaling through the protein kinase B/Akt pathway, as evidenced by decreased levels of phospho-Akt, and decreased activation of several downstream Akt targets, including p70 S6 kinase and 4E-BP1. Importantly, CNTO 328 + melphalan showed enhanced anti-proliferative effects compared to melphalan and a control MAb against primary CD138+ plasma cells derived from patients with multiple myeloma, monoclonal gammopathy of undetermined significance, and amyloidosis, while demonstrating less toxicity to stromal cells. The enhanced effect of the CNTO 328 + melphalan combination was statistically significant compared to either drug alone (p<0.05) in CD138+ cells isolated from patients who had not received prior melphalan therapy. Conclusions: These studies provide a rationale for translation of CNTO 328 into the clinic in combination with melphalan-based therapies, including either high dose therapy in transplant-eligible patients, or standard dose melphalan-containing induction regimens in transplant-ineligible patients, such as with the combination of bortezomib, melphalan, and prednisone. Disclosures: Voorhees: Millennium Pharmaceuticals: Speakers Bureau; Celgene: Speakers Bureau. Xie:Centocor Ortho Biotech Inc.: Employment. Cornfeld:Centocor Ortho Biotech Inc.: Employment. Nemeth:Centocor Ortho Biotech Inc.: Employment.


Blood ◽  
1989 ◽  
Vol 73 (2) ◽  
pp. 566-572
Author(s):  
C Duperray ◽  
B Klein ◽  
BG Durie ◽  
X Zhang ◽  
M Jourdan ◽  
...  

Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation, primarily in bone marrow, of a clone of plasma cells. The nature of the stem cells feeding the tumoral compartment is still unknown. To investigate this special point, we have studied the phenotypes of nine well-known human myeloma cell lines (HMCLs) and compared them with those of normal lymphoblastoid cell lines (LCLs). Twenty-four clusters of differentiation involved in B lymphopoiesis were investigated using a panel of 65 monoclonal antibodies (MoAbs). For each cluster, the percentage of positive cells and the antigen density were determined, giving rise to a “quantitative phenotype”. We thus classified the HMCLs into two different groups: those with cytoplasmic mu chains (c mu+) and those without (c mu-). In the first (c mu+) group, comprising seven cell lines, the HMCLs had a phenotype of pre-B/B cells close to that of Burkitt's lymphoma cell lines. They expressed low densities of surface mu chains, without detectable cytoplasmic or surface light chains. Three of them were infected with the Epstein Barr virus (EBV). These c mu+ HMCLs bore most of the B-cell antigens except CD23. They expressed the CALLA antigen (CD10) and lacked the plasma-cell antigen PCA1. In contrast, LCLs expressed surface light chains, high densities of CD23, low densities of PCA1 antigen, and no CD10 antigen. The c mu- HMCLs had a plasma-cell phenotype, lacking most of the B-cell antigens and expressing high densities of PCA1 antigen.(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
1995 ◽  
Vol 85 (3) ◽  
pp. 675-684 ◽  
Author(s):  
K Pulford ◽  
N Lecointe ◽  
K Leroy-Viard ◽  
M Jones ◽  
D Mathieu-Mahul ◽  
...  

Rearrangement of the tal-1 gene (also known as SCL or TCL-5) occurs in at least 25% of T-cell acute lymphoblastic leukemias (T-ALLs) and results in the aberrant expression of tal-1 mRNA in the neoplastic cells. Also, tal-1 mRNA is constitutively expressed in erythroid precursors and megakaryocytes. This report describes a direct immunocytochemical study of the distribution and localization of TAL-1 protein in normal human tissues and cell lines using four monoclonal antibodies raised against recombinant TAL-1 proteins. One of these reagents recognizes a protein of 41 kD molecular weight in in vitro- translated TAL-1 proteins, two others recognize proteins of 39 and 41 kD molecular weight, and the fourth antibody also recognizes a TAL-1 protein of 22 kD in addition to the 39- and 41-kD proteins. These anti- TAL-1 antibodies label the nuclei of erythroid precursor cells and megakaryocytes in fetal liver and adult bone marrow. The punctate pattern of nuclear labeling suggests that TAL-1 may comprise part of a novel nuclear structure, similar to that recently found for the PML protein. The nuclei of T cell lines known to express mRNA encoding the full-length TAL-1 protein (eg, CCRF-CEM, RPMI 8402, and Jurkat) are also labeled. A study of normal human tissues (including thymus) showed labeling of smooth muscle, some tissue macrophages, and endothelial cells. TAL-1 protein is undetectable in other cell types. These reagents may play an important role in the diagnosis of T-ALL and could also be used in the context of lymphoma diagnosis on routinely fixed material.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 610-618 ◽  
Author(s):  
Inge Tinhofer ◽  
Ingrid Marschitz ◽  
Traudl Henn ◽  
Alexander Egle ◽  
Richard Greil

Interleukin-15 (IL-15) induces proliferation and promotes cell survival of human T and B lymphocytes, natural killer cells, and neutrophils. Here we report the constitutive expression of a functional IL-15 receptor (IL-15R) in 6 of 6 myeloma cell lines and in CD38high/CD45low plasma cells belonging to 14 of 14 patients with multiple myeloma. Furthermore, we detected IL-15 transcripts in all 6 myeloma cell lines, and IL-15 protein in 4/6 cell lines and also in the primary plasma cells of 8/14 multiple myeloma patients. Our observations confirm the existence of an autocrine IL-15 loop and point to the potential paracrine stimulation of myeloma cells by IL-15 released from the cellular microenvironment. Blocking autocrine IL-15 in cell lines increased the rate of spontaneous apoptosis, and the degree of this effect was comparable to the pro-apoptotic effect of depleting autocrine IL-6 by antibody targeting. IL-15 was also capable of substituting for autocrine IL-6 in order to promote cell survival and vice versa. In short-term cultures of primary myeloma cells, the addition of IL-15 reduced the percentage of tumor cells spontaneously undergoing apoptosis. Furthermore, IL-15 lowered the responsiveness to Fas-induced apoptosis and to cytotoxic treatment with vincristine and doxorubicin but not with dexamethasone. These data add IL-15 to the list of important factors promoting survival of multiple myeloma cells and demonstrate that it can be produced and be functionally active in an autocrine manner.


2001 ◽  
Vol 171 (1) ◽  
pp. R1-R4 ◽  
Author(s):  
SK Peirce ◽  
WY Chen ◽  
WY Chen

Human prolactin (hPRL) has been reported to be involved in breast and prostate cancer development. The hPRL receptor (hPRLR) is expressed in a wide variety of tissues in at least three isoforms. In this study, a one-step real time reverse transcription PCR technique was used to determine relative expression levels of hPRLR mRNA in eleven human breast cancer cell lines, HeLa cells, three prostate cancer cell lines and nine normal human tissues. The housekeeping gene beta-actin was used for internal normalization. We demonstrate that hPRLR mRNA is up-regulated in six of the eleven breast cancer cell lines tested when compared with normal breast tissue. Of the cancer cell lines tested, we found that T-47D cells have the highest level of hPRLR mRNA, followed by MDA-MB-134, BT-483, BT-474, MCF-7 and MDA-MB-453 cells. In two breast cancer cell lines (MDA-MB-468 and BT-549), the hPRLR levels were found to be comparable to that of normal breast tissue. Three breast cancer cell lines (MDA-MB-436, MDA-MB-157 and MDA-MB-231) expressed hPRLR mRNA at levels lower than that of normal tissue. In contrast, in all three commonly used prostate cancer cell lines (LNCaP, PC-3 and DU 145), the levels of hPRLR mRNA were found to be down-regulated relative to that of normal prostate tissue. Of nine normal human tissues tested, we found that the uterus and the breast have the highest levels of hPRLR mRNA, followed by the kidney, the liver, the prostate and the ovary. The levels of hPRLR mRNA were the lowest among the trachea, the brain and the lung.


Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3375-3383 ◽  
Author(s):  
T Tsujimoto ◽  
IA Lisukov ◽  
N Huang ◽  
MS Mahmoud ◽  
MM Kawano

By using two-color phenotypic analysis with fluorescein isothiocyanate- anti-CD38 and phycoerythrin-anti-CD19 antibodies, we found that pre-B cells (CD38+CD19+) signifcantly decreased depending on the number of plasma cells (CD38++CD19+) in the bone marrow (BM) in the cases with BM plasmacytosis, such as myelomas and even polyclonal gammopathy. To clarify how plasma cells suppress survival of pre-B cells, we examined the effect of plasma cells on the survival of pre-B cells with or without BM-derived stromal cells in vitro. Pre-B cells alone rapidly entered apoptosis, but interleukin-7 (IL-7), a BM stromal cell line (KM- 102), or culture supernatants of KM-102 cells could support pre-B cell survival. On the other hand, inhibitory factors such as transforming growth factor-beta1 (TGF-beta1) and macrophage inflammatory protein- 1beta (MIP-1beta) could suppress survival of pre-B cells even in the presence of IL-7. Plasma cells alone could not suppress survival of pre- B cells in the presence of IL-7, but coculture of plasma cells with KM- 102 cells or primary BM stromal cells induced apoptosis of pre-B cells. Supernatants of coculture with KM-102 and myeloma cell lines (KMS-5) also could suppress survival of pre-B cells. Furthermore, we examined the expression of IL-7, TGF-beta1, and MIP-1beta mRNA in KM-102 cells and primary stromal cells cocultured with myeloma cell lines (KMS-5). In these cells, IL-7 mRNA was downregulated, but the expression of TGF- beta1 and MIP-1beta mRNA was augmented. Therefore, these results suggest that BM-derived stromal cells attached to plasma (myeloma) cells were modulated to secrete lesser levels of supporting factor (IL- 7) and higher levels of inhibitory factors (TGF-beta1 and MIP-1beta) for pre-B cell survival, which could explain why the increased number of plasma (myeloma) cells induced suppression of pre-B cells in the BM. This phenomenon may represent a feedback loop between pre-B cells and plasma cells via BM stromal cells in the BM.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1506-1506
Author(s):  
Rekha Pal ◽  
Martin Janz ◽  
Deborah Galson ◽  
Suzanne Lentzsch

Abstract The development and maturation of plasma cells is dictated by multiple interacting transcription factors (TFs). C/EBPb (NF-IL6) is a TF regulated by IL-6 and has profound effects on the regulation of growth, survival and differentiation of B-cells. Mice deficient in C/EBPb show impaired generation of B lymphocytes suggesting that C/EBPb plays an important role in B lymphopoiesis. In this study we delineated the effect of C/EBPb on transcription factors critical for myeloma cell proliferation by over-expressing and inhibiting C/EBPb in myeloma cells. Multiple myeloma (MM) cell lines MM.1S, RPMI-8226 and H929 were transiently transfected with GFP, C/EBPb (pcNF-IL6), and truncated C/EBPb with a deletion of the internal spII-spII fragment [pcmNF-IL6(Dspl)] by using Bio-Rad Gene Pulser Xcell, followed by G418 selection. A pool of transfected cells was selected and subjected to thymidine incorporation, flow cytometry and western blot analysis. We found that transfection of a truncated form of C/EBPb induced a down-regulation of C/EBPb in MM cell lines (MM.1S, RPMI-8226 and H929) as measured by western blot. Down-regulation of C/EBPβ significantly inhibited proliferation and induced apoptosis of MM cell lines analyzed by annexin V-FITC/PI staining. This was accompanied by a complete down-regulation of the anti-apoptotic protein BCL-2. Further, inhibition of C/EBPb completely decreased IRF-4 expression. In contrast, over-expression of C/EBPb increased protein levels of IRF-4 suggesting that IRF-4 is under control of C/EBPb. IRF-4, which was over-expressed in all our tested MM cells lines, is an essential TF for the generation of plasma cells by regulating TFs like Blimp-1 and PAX-5, which are critical for plasma cell differentiation. Our studies showed that down-regulation of IRF-4 resulted in a complete abrogation of Blimp-1 and PAX-5 suggesting that the expression of these factors is C/EBPb/IRF-4 dependent. In conclusion, our data indicate that C/EBPb is an important key regulator for survival and growth of MM cells. We show for the first time that C/EBPb is a critical regulator upstream of IRF-4. Down-regulation of the C/EBPb and consequently IRF-4 results in complete disruption of the network of TFs necessary for MM growth and survival. Targeting C/EBPb may provide a novel therapeutic approach in the treatment of MM.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4737-4737
Author(s):  
Abul Islam ◽  
Ken-ichiro Otsuyama ◽  
Jakia Amin ◽  
Saeid Abroun ◽  
Karim Shamsasenjan ◽  
...  

Abstract The chemokine, stromal cell-derived factor 1 (SDF-1; CXCL12) and its receptor, CXCR4 are considered to be essentially required for plasma cell homing to the bone marrow (BM). It is well known that plasma cells in the BM (long-lived plasma cells) survive for a long time and have the constitutively high NF-kB activity. Since human myeloma cells are considered to be derived from these committed long-lived plasma cells, we investigated the role of SDF-1 on the survival of primary myeloma cells from myeloma patients and the possible relationship with NF-kB activity. First, we confirmed that all primary myeloma cells expressed CXCR4 but not CCR9 or CCR10 receptors on their surface and the levels of CXCR4 expression apparently correlated with maturity of BM plasma cells; mature myeloma cells (MPC-1+) as well as polyclonal plasma cells expressed higher levels of CXCR4 than those on immature myeloma cells (MPC-1-). The production of SDF-1 was found strongly in BM stromal cells but not in primary myeloma cells as well as myeloma cell lines. On the other hand, high DNA binding activity of NF-kB was constitutively detected in primary myeloma cells as well as myeloma cell lines, and these NF-kB activities significantly correlated with the expression levels of CD54 on their surface, for CD54 gene is one of the strict NF-kB target genes. Based on the expression levels of CD54 protein, interestingly, primary myeloma cells showed weaker NF-kB activities than those in monoclonal plasma cells from MGUS and polyclonal plasma cells from polyclonal gammopathy. Plasma concentrations of SDF-1 were also significantly correlated to the expression levels of CD54 on primary myeloma cells significantly (P<0.01). Furthermore, it was confirmed that addition of SDF-1 significantly increased the expression levels of CD54 in the in vitro culture of primary myeloma cells. Therefore, these results indicate that SDF-1 is responsible for high expression levels of CD54 and possibly the constitutively high NF-kB activity in primary myeloma cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1846-1846
Author(s):  
Mae Wong ◽  
Parisa Asvadi ◽  
Rosanne Dunn ◽  
Darren Jones ◽  
Douglas Campbell ◽  
...  

Abstract Abstract 1846 Poster Board I-872 Previous studies have described a murine monoclonal antibody, mKap, that specifically recognizes a cell surface antigen expressed on kappa myeloma cells and not on normal lymphoid cells. This antigen has been identified and designated kappa myeloma antigen (KMA). KMA consists of free kappa light chains (kFLC) not associated with heavy chain and is present on plasma cells isolated from kappa myeloma (MMk) patient bone marrow aspirates, kappa myeloma cell lines and kappa macroglobulinemia. In vitro data demonstrated that mKap was able to inhibit cell growth and induce apoptosis in myeloma cell lines. In addition, pre-clinical studies demonstrated that mKap was well tolerated and showed significant efficacy in a SCID xenograft model of MM. MDX-1097 is a chimeric version of mKap that is currently in development for the treatment of kappa restricted multiple myeloma. The antibody retains the binding affinity and specificity of mKap. Specific binding of MDX-1097 to malignant plasma cells isolated from MMk patient bone marrow aspirates has recently been demonstrated by flow cytometry. In addition a human tissue cross-reactivity study was performed using immunohistochemistry to assess the potential binding of MDX-1097-FITC to cryosections taken from a human tissue panel of three normal donors. The results demonstrated that MDX-1097 bound to bone marrow plasma cells from two patients with kappa cell dyscrasia but did not bind to normal human tissue samples or to plasma cells from a patient with lambda plasmacytoma. The ability of serum kFLC to inhibit MDX-1097 binding to the myeloma cell line, JJN3, was assessed by flow cytometry using serum derived from 32 MMk patients. The results indicated that MDX-1097 at a concentration of 100μg/mL (equivalent to an estimated serum concentration of 5mg/kg dose) is capable of binding to myeloma cells in the presence of 0–250μg/mL of serum kFLC. In vitro functional studies have demonstrated that MDX-1097 engages Fc receptor bearing effector cells and induces antibody dependent cellular cytotoxicity (ADCC) in kappa myeloma cell lines in the presence of healthy donor peripheral blood mononuclear cells. Further investigations have verified that purified natural killer cells (NK) play a major role in MDX-1097 anti-tumour activity. Importantly, recent studies have demonstrated that antibody dependent cellular phagocytosis by macrophages contributes to the anti-tumour activity of several therapeutic monoclonal antibodies. Preliminary data indicates that MDX-1097 may be capable of inducing enhanced uptake by macrophages. In conclusion MDX-1097 showed specific binding to KMA on myeloma cells isolated from patient's bone marrow samples and antibody binding is observed in the presence of kFLC in patient serum. In addition MDX-1097 anti-tumour activity is probably mediated by multiple Fc receptor bearing effector cells. Disclosures: Wong: Immune System Therapeutics: Employment. Asvadi:Immune System Therapeutics: Employment. Dunn:Immune System Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Jones:Immune System Therapeutics: Employment. Campbell:Immune System Therapeutics: Employment.


Sign in / Sign up

Export Citation Format

Share Document