Reduced Expression of Annexin A2 is Associated with Impaired Cell Surface Fibrinolysis and Venous Thromboembolism

Blood ◽  
2021 ◽  
Author(s):  
Hannah Fassel ◽  
Huigen Chen ◽  
Mary Ruisi ◽  
Neha Kumar ◽  
Maria T DeSancho ◽  
...  

Reduced plasma fibrinolysis has been identified as a potential risk factor for venous thromboembolism (VTE), but the role of cell surface fibrinolysis in VTE is unknown. The annexin A2/S100A10 complex serves as a co-receptor for plasminogen and tissue plasminogen activator (tPA), augmenting plasmin generation by 60-fold on the endothelial cell surface. Several studies in both mice and humans support the concept that A2 regulates fibrin homeostasis and intravascular thrombosis in vivo. Here, we examined A2 protein expression and function in 115 adult subjects with venous thromboembolism (VTE) and 87 healthy controls. Using peripheral blood mononuclear cells (PBMCs) as a surrogate for endothelial cells, we found a 41% mean decrease in cell surface tPA-dependent fibrinolytic activity in subjects who had a positive personal and family history of VTE, but tested negative for known inherited thrombophilias. A2 protein was reduced on average by 70%, and mRNA levels by 30%, but neither decrease correlated with anticoagulant therapy. [Sentence omitted] Neither cell A2 protein nor cell surface plasmin generation correlated with plasma-based clot lysis times, suggesting that the plasma and cell surface fibrinolytic systems operate independently of one another. These data suggest that reduced expression of annexin A2 protein is associated with cell surface hypofibrinolysis and may represent a novel risk factor for inherited thrombophilia.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaodong Yang ◽  
Yi Zhang ◽  
Yimeng Chen ◽  
Xiaoqin He ◽  
Yiwei Qian ◽  
...  

Abstract Background Microglia-mediated neuroinflammation plays an important role in Parkinson’s disease (PD), and it exerts proinflammatory or anti-inflammatory effects depending on the M1/M2 polarization phenotype. Hence, promoting microglia toward the anti-inflammatory M2 phenotype is a potential therapeutic approach for PD. Long noncoding RNAs (lncRNAs) are crucial in the progression of neurodegenerative diseases, but little is known about their role in microglial polarization in PD. Methods In our study, we profiled the expression of lncRNAs in the peripheral blood mononuclear cells (PBMCs) of PD patients using a microarray. RT-qPCR was used to evaluate the lncRNA levels and mRNA levels of cytokines and microglial cell markers both in vitro and in vivo. RIP and ChIP assays were analyzed for the underlying mechanism of lncRNA regulating microglial polarization. Results We found that HOXA-AS2 was upregulated in the PBMCs of PD patients and negatively associated with peroxisome proliferator-activated receptor gamma coactivator-1a (PGC-1α) expression. Moreover, HOXA-AS2 knockdown significantly repressed microglial M1 polarization and promoted M2 polarization by regulating PGC-1α expression. Mechanistic investigations demonstrated that HOXA-AS2 could directly interact with polycomb repressive complex 2 (PRC2) and modulate the histone methylation of the promoter of PGC-1α. Conclusions Our findings identify the upregulated lncRNA HOXA-AS2 promotes neuroinflammation by regulating microglial polarization through interacts with the PRC2 complex and epigenetically silencing PGC-1α. HOXA-AS2 may be a potential therapeutic target for microglia-mediated neuroinflammation in patients with PD.


2001 ◽  
Vol 7 (3) ◽  
pp. 157-163 ◽  
Author(s):  
Y Dai ◽  
T Masterman ◽  
W X Huang ◽  
M Sandberg-Wollheim ◽  
M Laaksonen ◽  
...  

The proinflammatory cytokine interferon (IFN)-γ has been shown to influence the course of multiple sclerosis (MS). The IFN-γ (IFNG) contains a multiallelic dinucleotide repeat in intron l. To investigate whether alleles at this locus influence susceptibility to MS, we performed linkage and familial association analyses on 100 sibling pairs from four Nordic countries, and case-control association analysis on 220 intermediately disabled sporadic MS patients and 266 controls. To determine the effect of the polymorphism on disease outcome, we compared genotype frequencies in the most and least disabled octiles of a total cohort of 913 cases. We also measured IFN-γ mRNA levels in unstimulated peripheral blood mononuclear cells from 46 MS patients and 27 controls grouped according to IFNG intron l genotype. Both nonparametric linkage analysis and transmission disequilibrium testing of the 100 sibling pairs produced negative results. Genotype frequencies for intermediate-MS patients did not differ significantly from those for controls; nor did genotype frequencies in the benign-MS octile differ significantly from those in the severe-MS octile. Comparison of IFN-γ mRNA levels in genotype-conditioned subgroups revealed no significant differences. Thus, alleles at the IFNG intron l dinucleotide repeat appear to affect neither MS susceptibility and severity nor IFN-γ mRNA expression in vivo.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Hong Yu ◽  
Yanbin Niu ◽  
Guohua Jia ◽  
Yujie Liang ◽  
Baolin Chen ◽  
...  

AbstractRetinoic acid-related orphan receptor alpha (RORA) suppression is associated with autism spectrum disorder (ASD) development, although the mechanism remains unclear. In this study, we aim to investigate the potential effect and mechanisms of RORA suppression on autism-like behavior (ALB) through maternal diabetes-mediated mouse model. Our in vitro study in human neural progenitor cells shows that transient hyperglycemia induces persistent RORA suppression through oxidative stress-mediated epigenetic modifications and subsequent dissociation of octamer-binding transcription factor 3/4 from the RORA promoter, subsequently suppressing the expression of aromatase and superoxide dismutase 2. The in vivo mouse study shows that prenatal RORA deficiency in neuron-specific RORA null mice mimics maternal diabetes-mediated ALB; postnatal RORA expression in the amygdala ameliorates, while postnatal RORA knockdown mimics, maternal diabetes-mediated ALB in offspring. In addition, RORA mRNA levels in peripheral blood mononuclear cells decrease to 34.2% in ASD patients (n = 121) compared to the typically developing group (n = 118), and the related Receiver Operating Characteristic curve shows good sensitivity and specificity with a calculated 84.1% of Area Under the Curve for ASD diagnosis. We conclude that maternal diabetes contributes to ALB in offspring through suppression of RORA and aromatase, RORA expression in PBMC could be a potential marker for ASD screening.


2020 ◽  
Author(s):  
Hacer Kuzu Okur ◽  
Koray Yalcin ◽  
Cihan Tastan ◽  
Sevda Demir ◽  
Bulut Yurtsever ◽  
...  

UNSTRUCTURED Dornase alfa, the recombinant form of the human DNase I enzyme, breaks down neutrophil extracellular traps (NET) that include a vast amount of DNA fragments, histones, microbicidal proteins and oxidant enzymes released from necrotic neutrophils in the highly viscous mucus of cystic fibrosis patients. Dornase alfa has been used for decades in patients with cystic fibrosis to reduce the viscoelasticity of respiratory tract secretions, to decrease the severity of respiratory tract infections, and to improve lung function. Previous studies have linked abnormal NET formations to lung diseases, especially to acute respiratory distress syndrome (ARDS). Coronavirus disease 2019 (COVID-19) pandemic affected more than two million people over the world, resulting in unprecedented health, social and economic crises. The COVID-19, viral pneumonia that progresses to ARDS and even multiple organ failure, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). High blood neutrophil levels are an early indicator of SARS-CoV-2 infection and predict severe respiratory diseases. A similar mucus structure is detected in COVID-19 patients due to the accumulation of excessive NET in the lungs. Here, we show our preliminary results with dornase alfa that may have an in-vitro anti-viral effect against SARS-CoV-2 infection in a bovine kidney cell line, MDBK without drug toxicity on healthy adult peripheral blood mononuclear cells. In this preliminary study, we also showed that dornase alfa can promote clearance of NET formation in both an in-vitro and three COVID-19 cases who showed clinical improvement in radiological analysis (2-of-3 cases), oxygen saturation (SpO2), respiratory rate, disappearing of dyspnea and coughing.


2020 ◽  
pp. jmedgenet-2020-107059 ◽  
Author(s):  
Sabine Raad ◽  
Marion Rolain ◽  
Sophie Coutant ◽  
Céline Derambure ◽  
Raphael Lanos ◽  
...  

BackgroundThe interpretation of germline TP53 variants is critical to ensure appropriate medical management of patients with cancer and follow-up of variant carriers. This interpretation remains complex and is becoming a growing challenge considering the exponential increase in TP53 tests. We developed a functional assay directly performed on patients’ blood.MethodsPeripheral blood mononuclear cells were cultured, activated, exposed to doxorubicin and the p53-mediated transcriptional response was quantified using reverse transcription–multiplex ligation probe amplification and RT-QMPSF assays, including 10 p53 targets selected from transcriptome analysis, and two amplicons to measure p53 mRNA levels. We applied this blood functional assay to 77 patients addressed for TP53 analysis.ResultsIn 51 wild-type TP53 individuals, the mean p53 functionality score was 12.7 (range 7.5–22.8). Among eight individuals harbouring likely pathogenic or pathogenic variants, the scores were reduced (mean 4.8, range 3.1–7.1), and p53 mRNA levels were reduced in patients harbouring truncating variants. We tested 14 rare unclassified variants (p.(Pro72His), p.(Gly105Asp), p.(Arg110His), p.(Phe134Leu), p.(Arg158Cys), p.(Pro191Arg), p.(Pro278Arg), p.(Arg283Cys), p.(Leu348Ser), p.(Asp352Tyr), p.(Gly108_Phe109delinsVal), p.(Asn131del), p.(Leu265del), c.-117G>T) and 12 yielded functionally abnormal scores. Remarkably, the assay revealed that the c.*1175A>C polymorphic variant within TP53 poly-adenylation site can impact p53 function with the same magnitude as a null variant, when present on both alleles, and may act as a modifying factor in pathogenic variant carriers.ConclusionThis blood p53 assay should therefore be a useful tool for the rapid clinical classification of germline TP53 variants and detection of non-coding functional variants.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Rachel Tanner ◽  
Andrew D. White ◽  
Charelle Boot ◽  
Claudia C. Sombroek ◽  
Matthew K. O’Shea ◽  
...  

AbstractWe present a non-human primate mycobacterial growth inhibition assay (MGIA) using in vitro blood or cell co-culture with the aim of refining and expediting early tuberculosis vaccine testing. We have taken steps to optimise the assay using cryopreserved peripheral blood mononuclear cells, transfer it to end-user institutes, and assess technical and biological validity. Increasing cell concentration or mycobacterial input and co-culturing in static 48-well plates compared with rotating tubes improved intra-assay repeatability and sensitivity. Standardisation and harmonisation efforts resulted in high consistency agreements, with repeatability and intermediate precision <10% coefficient of variation (CV) and inter-site reproducibility <20% CV; although some systematic differences were observed. As proof-of-concept, we demonstrated ability to detect a BCG vaccine-induced improvement in growth inhibition in macaque samples, and a correlation between MGIA outcome and measures of protection from in vivo disease development following challenge with either intradermal BCG or aerosol/endobronchial Mycobacterium tuberculosis (M.tb) at a group and individual animal level.


2005 ◽  
Vol 288 (3) ◽  
pp. R591-R599 ◽  
Author(s):  
Mitsuharu Okutsu ◽  
Kenji Ishii ◽  
Kai Jun Niu ◽  
Ryoichi Nagatomi

The aim of this study was to elucidate the mechanism responsible for lymphopenia after exercise. Seven young healthy men volunteered for this study. Peripheral blood mononuclear cells (PBMC) were cultured with cortisol and analyzed for C-X-C motif chemokine receptor 4 (CXCR4) expression by flow cytometry. To determine the effects of exercise, subjects performed exhaustive cycling exercise. PBMC were cultured with plasma obtained before and after the cycling exercise. Alternatively, PBMC obtained before and after exercise were cultured without plasma or glucocorticoid to examine whether PBMC were primed in vivo for CXCR4 expression. We analyzed cortisol- or plasma-treated PBMC to determine their ability to migrate through membrane filters in response to stromal cell-derived factor 1α/CXCL12. Cortisol dose- and time-dependently augmented CXCR4 expression on T lymphocytes, with <6 h of treatment sufficient to augment CXCR4 on T lymphocytes. Postexercise plasma also augmented CXCR4 expression. Cortisol or postexercise plasma treatment markedly enhanced migration of T lymphocytes toward CXCL12. Augmentation of CXCR4 on T lymphocytes by cortisol or plasma was effectively blocked by the glucocorticoid receptor antagonist RU-486. Thus exercise-elicited endogenous cortisol effectively augments CXCR4 expression on T lymphocytes, which may account for lymphopenia after exercise.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2516-2525 ◽  
Author(s):  
K Meszaros ◽  
S Aberle ◽  
R Dedrick ◽  
R Machovich ◽  
A Horwitz ◽  
...  

Abstract Mononuclear phagocytes, stimulated by bacterial lipopolysaccharide (LPS), have been implicated in the activation of coagulation in sepsis and endotoxemia. In monocytes LPS induces the synthesis of tissue factor (TF) which, assembled with factor VII, initiates the blood coagulation cascades. In this study we investigated the mechanism of LPS recognition by monocytes, and the consequent expression of TF mRNA and TF activity. We also studied the inhibition of these effects of LPS by rBPI23, a 23-kD recombinant fragment of bactericidal/permeability increasing protein, which has been shown to antagonize LPS in vitro and in vivo. Human peripheral blood mononuclear cells, or monocytes isolated by adherence, were stimulated with Escherichia coli O113 LPS at physiologically relevant concentrations (&gt; or = 10 pg/mL). The effect of LPS was dependent on the presence of the serum protein LBP (lipopolysaccharide-binding protein), as shown by the potentiating effect of human recombinant LBP or serum. Furthermore, recognition of low amounts of LPS by monocytes was also dependent on CD14 receptors, because monoclonal antibodies against CD14 greatly reduced the LPS sensitivity of monocytes in the presence of serum or rLBP. Induction of TF activity and mRNA expression by LPS were inhibited by rBPI23. The expression of tumor necrosis factor showed qualitatively similar changes. Considering the involvement of LPS-induced TF in the potentially lethal intravascular coagulation in sepsis, inhibition of TF induction by rBPI23 may be of therapeutic benefit.


Sign in / Sign up

Export Citation Format

Share Document