Potential Role of Immunosuppression in Therapeutic Effects Conferred by Cord Blood- Derived Mesenchymal Stem Cells.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2302-2302
Author(s):  
Nagwa S. El-Badri (Dajani) ◽  
Denis English ◽  
Amal Hakki ◽  
Sriram Mudhusoodanan ◽  
Cyndy D. Sanberg ◽  
...  

Abstract Our previous studies consistently demonstrate enhanced neural protective effects of cord blood in comparison to stem cells from adult marrow. Similarly, cord blood possesses diminished immuno-stimulatory activity, and the basis of this effect has not been defined. Since neural damage may be potentiated by immune activation of inflammatory cascades, we examined the effects of cord blood-derived MSCs (mesenchymal stem cells) on immune responses. We isolated and characterized a population of cord blood MSCs. These cells maintained their pluripotency in culture. Progeny generated in the absence of differentiation were strongly adherent, did not express CD34, CD45, CD3, CD19 antigens, and did not generate hematopoietic colonies in methylcellulose. However, cultured cord blood MSCs possessed a remarkable ability to support the proliferation as well as the differentiation of hematopoietic cells in vitro. In addition, supernatants from cultured cord blood MSCs promoted survival of peripheral blood mononuclear cells cultured under conditions designed to induce cell stress and limit protein synthesis. We examined immune modulation by cord blood MSCs after co-culture with murine splenocytes. While spleen cells from normal C57Bl/6 mice exhibited a prominent IgM response after immunization with the T-cell dependent antigen, SRBCs, this response was significantly decreased after incubation with cord blood MSCs. Consistently, cord blood MSCs mitigated the enhanced mixed lymphocyte proliferative response C57Bl/6 T-cells exhibit when exposed to lymphocytes from non-related animals. To investigate whether these immune suppressive properties could be therapeutically useful in a transplantation model for autoimmune disease, cord blood MSCs were transplanted into sublethally irradiated BXSB mouse model for systemic lupus. Thirty days after infusion, defective IgM humoral immune responses of splenocytes of these mice normalized. This normalization paralleled normalization of the disrupted lymphoid cellularity observed in the spleens of diseased animals. Our results are consistent with the hypothesis that immune regulation is involved in the therapeutic utility of MSCs.

2012 ◽  
Vol 107 (05) ◽  
pp. 937-950 ◽  
Author(s):  
Li Ma ◽  
Zeping Zhou ◽  
Donglei Zhang ◽  
Shaoguang Yang ◽  
Jinhong Wang ◽  
...  

SummaryHuman umbilical cord matrix/Wharton's Jelly (hUC)-derived mesenchymal stem cells (MSC) have been shown to have marked therapeutic effects in a number of inflammatory diseases and autoimmune diseases in humans based on their potential for immunosuppression and their low immunogenicity. Currently, no data are available on the effectiveness of UC-MSC transplantation in immune thrombocytopenia (ITP) patients. It was the objective of this study to assess the effect of allogeneic UC-MSCs on ITP patients in vitro and in vivo. Peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BM-MNCs) from ITP patients and healthy controls were co-cultured with UC-MSCs for three days and seven days, respectively. Flow cytometry and ELISA were applied to assess the various parameters. In PBMCs from ITP patients, the proliferation of autoreactive T, B lymphocytes and destruction of autologous platelets were dramatically suppressed by UC-MSCs. UC-MSCs not only suppressed co-stimulatory molecules CD80, CD40L and FasL expression but also in shifting Th1/Th2/Treg cytokines profile in ITP patients. UC-MSCs obviously reversed the dysfunctions of megakaryocytes by promoting platelet production and decreasing the number of living megakaryocytes as well as early apoptosis. In addition, the level of thrombopoietin was increased significantly. Our clinical study showed that UC-MSCs play a role in alleviating refractory ITP by increasing platelet numbers. These findings suggested that UC-MSCs transplantation might be a potential therapy for ITP.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 667
Author(s):  
Gabriella Racchetti ◽  
Jacopo Meldolesi

Mesenchymal stem cells (MSCs), the cells distributed in the stromas of the body, are known for various properties including replication, the potential of various differentiations, the immune-related processes including inflammation. About two decades ago, these cells were shown to play relevant roles in the therapy of numerous diseases, dependent on their immune regulation and their release of cytokines and growth factors, with ensuing activation of favorable enzymes and processes. Such discovery induced great increase of their investigation. Soon thereafter, however, it became clear that therapeutic actions of MSCs are risky, accompanied by serious drawbacks and defects. MSC therapy has been therefore reduced to a few diseases, replaced for the others by their extracellular vesicles, the MSC-EVs. The latter vesicles recapitulate most therapeutic actions of MSCs, with equal or even better efficacies and without the serious drawbacks of the parent cells. In addition, MSC-EVs are characterized by many advantages, among which are their heterogeneities dependent on the stromas of origin, the alleviation of cell aging, the regulation of immune responses and inflammation. Here we illustrate the MSC-EV therapeutic effects, largely mediated by specific miRNAs, covering various diseases and pathological processes occurring in the bones, heart and vessels, kidney, and brain. MSC-EVs operate also on the development of cancers and on COVID-19, where they alleviate the organ lesions induced by the virus. Therapy by MSC-EVs can be improved by combination of their innate potential to engineering processes inducing precise targeting and transfer of drugs. The unique properties of MSC-EVs explain their intense studies, carried out with extraordinary success. Although not yet developed to clinical practice, the perspectives for proximal future are encouraging.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Selin Yildirim ◽  
Noushin Zibandeh ◽  
Deniz Genc ◽  
Elif Merve Ozcan ◽  
Kamil Goker ◽  
...  

Aim. To compare the effects of various mesenchymal stem cells, those isolated from human exfoliated deciduous teeth (SHEDs), dental pulp stem cells (DPSCs), and dental follicle stem cells (DFSCs), on human peripheral blood mononuclear cells (PBMCs).Method. Mesenchymal stem cells were isolated from three sources in the orofacial region. Characterization and PCR analyses were performed. Lymphocytes were isolated from healthy peripheral venous blood. Lymphocytes were cocultured with stem cells in the presence and absence of IFN-γand stimulated with anti-CD2, anti-CD3, and anti-CD28 for 3 days. Then, lymphocyte proliferation, the number of CD4+FoxP3+T regulatory cells, and the levels of Fas/Fas ligand, IL-4, IL-10, and IFN-γin the culture supernatant were measured.Results. The DFSCs exhibited an enhanced differentiation capacity and an increased number of CD4+FoxP3+T lymphocytes and suppressed the proliferation and apoptosis of PBMCs compared with SHEDs and DPSCs. The addition of IFN-γaugmented the proliferation of DFSCs. Furthermore, the DFSCs suppressed IL-4 and IFN-γcytokine levels and enhanced IL-10 levels compared with the other cell sources.Conclusion. These results suggest that IFN-γstimulates DFSCs by inducing an immunomodulatory effect on the PBMCs of healthy donors while suppressing apoptosis and proliferation and increasing the number of CD4+FoxP3+cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Pascual Martínez-Peinado ◽  
Sandra Pascual-García ◽  
Enrique Roche ◽  
José Miguel Sempere-Ortells

Mesenchymal stem cells (MSC) are a widely used population in cell therapy for their ability to differentiate into distinct tissues and more lately, for their immunomodulatory properties. However, the use of heterogeneous populations could be responsible for the nondesired outcomes reflected in the literature. Here, we analyse the different capacities of five one-cell-derived MSC clones to exert their immunomodulation ex vivo. We assessed proliferation assays in cocultures of MSC clones and purified cluster of differentiation (CD)3+, CD4+, or CD8+ lymphocytes; analysed the regulatory T (Treg) cells fold change rate; determined the effects on viability of peripheral blood mononuclear cells (PBMC); and also measured the coculture cytokine profiles (Th1/Th2). Conditioned media (CM) of different clones were also used to perform both proliferation assays and to analyse Treg fold change. The five clones analysed in this work were able to generate heterogeneous environments. Different clones inhibited proliferation of CD3+ and CD4+ lymphocytes, with different intensities. Surprisingly, all clones promoted proliferation of CD8+ lymphocytes. Different MSC clones and their CM were able to increase the number of Treg with different intensities. Finally, different clones also promoted different effects on the viability of PBMC treated with ultraviolet light. Considering all these data together, it seems that different clones, even from the same donor, can promote a wide spectrum of responses from anti-inflammatory to proinflammatory character. This fact may be important to standardise the design of personalized cell therapy protocols, thus diminishing the aforementioned undesired outcomes existing nowadays in this type of therapies.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yue Sun ◽  
Wei Deng ◽  
Linyu Geng ◽  
Lu Zhang ◽  
Rui Liu ◽  
...  

Mesenchymal stem cells (MSCs) possess multipotent and immunomodulatory properties and are suggested to be involved in the pathogenesis of immune-related diseases. This study explored the function of bone marrow MSCs from rheumatoid arthritis (RA) patients, focusing on immunomodulatory effects. RA MSCs showed decreased proliferative activity and aberrant migration capacity. No significant differences were observed in cytokine profiles between RA and control MSCs. The effects of RA MSCs on proliferation of peripheral blood mononuclear cells (PBMCs) and distribution of specific CD4+T cell subtypes (Th17, Treg, and Tfh cells) were investigated. RA MSCs appeared to be indistinguishable from controls in suppressing PBMC proliferation, decreasing the proportion of Tfh cells, and inducing the polarization of Treg cells. However, the capacity to inhibit Th17 cell polarization was impaired in RA MSCs, which was related to the low expression of CCL2 in RA MSCs after coculture with CD4+T cells. These findings indicated that RA MSCs display defects in several important biological activities, especially the capacity to inhibit Th17 cell polarization. These functionally impaired MSCs may contribute to the development of RA disease.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Urszula Skalska ◽  
Ewa Kontny

Adiponectin and leptin have recently emerged as potential risk factors in rheumatoid arthritis (RA) pathogenesis. In this study we evaluated the effects of adiponectin and leptin on immunomodulatory function of adipose mesenchymal stem cells (ASCs) derived from infrapatellar fat pad of RA patients. ASCs were stimulated with leptin, low molecular weight (LMW) and high/middle molecular weight (HMW/MMW) adiponectin isoforms. The secretory activity of ASCs and their effect on rheumatoid synovial fibroblasts (RA-FLS) and peripheral blood mononuclear cells (PBMCs) from healthy donors have been analysed. RA-ASCs secreted spontaneously TGFβ, IL-6, IL-1Ra, PGE2, IL-8, and VEGF. Secretion of all these factors was considerably upregulated by HMW/MMW adiponectin, but not by LMW adiponectin and leptin. Stimulation with HMW/MMW adiponectin partially abolished proproliferative effect of ASC-derived soluble factors on RA-FLS but did not affect IL-6 secretion in FLS cultures. ASCs pretreated with HMW/MMW adiponectin maintained their anti-inflammatory function towards PBMCs, which was manifested by moderate PBMCs proliferation inhibition and IL-10 secretion induction. We have proved that HMW/MMW adiponectin stimulates secretory potential of rheumatoid ASCs but does not exert strong impact on ASCs function towards RA-FLS and PBMCs.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4249-4249 ◽  
Author(s):  
Jennifer L. Chan ◽  
Jonathan S. Harrison ◽  
Nicholas M. Ponzio ◽  
Pranela Rameshwar

Abstract Mesenchymal stem cells (MSC) mostly surround the vasculature system of bone marrow (BM). MSC have been shown to exhibit immune suppressive properties. Since MSC express MHC Class II antigen, the question is whether these cells can act as APC. To this end, we hypothesize that MSC have the ability to present non-self antigens while acting as immune modulators. These dual roles of MSC prevent exacerbated inflammatory responses in the BM, thereby preventing hematopoietic dysfunction. A ‘dampened’ immune response in BM during insults by foreign agents could cause protection of the barrier that separates BM cavity with the periphery. The phagocytic role of MSC was shown by confocal microscopy and fluoresbrite plain YG 1.0-micron microspheres. APC property was demonstrated by challenging MSC with C. albicans (pulsed MSC), followed by exposure to CD4+ cells. The latter was obtained by immunoselection from peripheral blood mononuclear cells (PBMC) cultured for 5 days with C. albicans (10 mg/ml). Proliferation of the CD4+ cells (3H-thymidine incorporation and cell counts) proved APC properties of MSC, at efficiency comparable to macrophages. Overall, the studies show that the window between APC function and the period at which MSC could become immune suppressive is critical, since activated T-cells could destroy the endothelial barrier between BM and lymphatics/peripheral circulation. These studies show that MSC could be key cells in regulating immune responses in BM, and thereby protect BM from failure.


Sign in / Sign up

Export Citation Format

Share Document