Distinct Expression Patterns of Human microRNAs in Myeloid Differentiation and Acute Myeloid Leukemia.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2231-2231
Author(s):  
Fabienne Isken ◽  
Björn Steffen ◽  
Birgit Markus ◽  
Claudia Hömme ◽  
David Kosel ◽  
...  

Abstract MicroRNAs (miRNAs) play an important role in differentiation, regulation of cell growth, cell death and potentially cancer pathogenesis. In the current study, we profiled expression of 154 human miRNAs by using a stem-loop reverse transcription and real-time PCR approach in 50 patients with AML and 12 control samples (normal bone marrow (NBM) samples and CD34+ cells). All of these samples were simultaneously analysed by whole genome mRNA microarrays. Out of all miRNAs tested, more than 30 were analyzed in a second, independent group of 48 AML samples and 4 controls. Five miRNAs showed differentiation associated expression changes which were confirmed by in-vitro differentiation of HL-60 cells with all-trans retinoic acid (ATRA) or 12-O-tetradecanoylphorbol-13-acetate (TPA). Overall, we found six miRNAs, including the miR-221 and 222 cluster, that showed substantially different expression between AML and CD34+ cells/ NBM. In class prediction analyses using support vector machines, 92% of the AML samples and 100% of the control samples were correctly predicted. We also looked for differentially regulated miRNAs in FAB subtypes and identified several miRNAs with significantly different expression. For example, high expression levels of miR-26a, 23a and 27b occurred in FAB M5. mRNA levels were analyzed with regard to differences in miRNA expression. Significant negative correlations with specific mRNAs were observed for several miRNAs, for example miR-23b. When mRNA expression patterns were analyzed for dichotomized miRNA levels, close associations between specific miRNAs and gene expression clusters were observed. For example, miR-10a levels were closely associated with the expression of hox genes. Taken together, the distinct expression patterns of miRNAs observed in AML strongly suggest involvement of the described miRNAs in both hematopoietic differentiation and pathogenesis of AML.

2003 ◽  
Vol 16 (4) ◽  
pp. 281-288 ◽  
Author(s):  
Tomomi Nakagawa ◽  
Tomoko Izumi ◽  
Mari Banba ◽  
Yosuke Umehara ◽  
Hiroshi Kouchi ◽  
...  

Phosphoenolpyruvate carboxylases (PEPCs), one form of which in each legume species plays a central role in the carbon metabolism in symbiotic root nodules, are activated through phosphorylation of a conserved residue by a specific protein kinase (PEPC-PK). We characterized the cDNAs for two PEPC isoforms of Lotus japonicus, an amide-translocating legume that forms determinate nodules. One gene encodes a nodule-enhanced form, which is more closely related to the PEPCs in amide-type indeterminate nodules than those in ureide-type determinate nodules. The other gene is expressed in shoots and roots at a low level. Both forms have the putative phosphorylation site, Ser11. We also isolated a cDNA and the corresponding genomic DNA for PEPC-PK of L. japonicus. The recombinant PEPC-PK protein expressed in Escherichia coli phosphorylated recombinant maize C4-form PEPC efficiently in vitro. The level of mRNA for PEPC-PK was high in root nodules, and those in shoots and roots were also significant. In situ hybridization revealed that the expression patterns of the transcripts for PEPC and PEPC-PK were similar in mature root nodules, but were different in emerging nodules. When L. japonicus seedlings were subjected to prolonged darkness and subsequent illumination, the activity of PEPC-PK and the mRNA levels of both PEPC and PEPC-PK in nodules decreased and then recovered, suggesting that they are regulated according to the amounts of photosynthates transported from shoots.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 462 ◽  
Author(s):  
George Ramirez ◽  
Jaime Palomino ◽  
Karla Aspee ◽  
Monica De los Reyes

The competence to undergo expansion is a characteristic of cumulus cells (CCs). The aim was to investigate the expression of GDF-9 and BMP-15 mRNA in canine cumulus cells in relation to cumulus expansion and meiotic development over the estrous cycle. CCs were recovered from nonmatured and in vitro-matured (IVM) dog cumulus oocyte complexes (COCs), which were obtained from antral follicles at different phases of the estrous cycle. Quantitative real-time polymerase chain reaction (q-PCR) was used to evaluate the relative abundance of GDF-9 and BMP-15 transcripts from the CCs with or without signs of expansion. The results were evaluated by ANOVA and logistic regression. The maturity of the oocyte and the expansion process affected the mRNA levels in CCs. There were differences (p < 0.05) in GDF-9 and BMP-15 gene expression in CCs isolated from nonmatured COCs when comparing the reproductive phases. Lower mRNA levels (p < 0.05) were observed in anestrus and proestrus in comparison to those in estrus and diestrus. In contrast, when comparing GDF-9 mRNA levels in IVM COCs, no differences were found among the phases of the estrous cycle in expanded and nonexpanded CCs (p < 0.05). However, the highest (p < 0.05) BMP-15 gene expression in CCs that did not undergo expansion was exhibited in anestrus and the lowest (p < 0.05) expression was observed in estrus in expanded CCs. Although the stage of the estrous cycle did not affect the second metaphase (MII )rates, the expanded CCs obtained at estrus coexisted with higher percentages of MII (p < 0.05). In conclusion, the differential expression patterns of GDF-9 and BMP-15 mRNA transcripts might be related to cumulus expansion and maturation processes, suggesting specific regulation and temporal changes in their expression.


Blood ◽  
2003 ◽  
Vol 101 (6) ◽  
pp. 2328-2334 ◽  
Author(s):  
Mı́riam Molina-Arcas ◽  
Beatriz Bellosillo ◽  
F. Javier Casado ◽  
Emili Montserrat ◽  
Joan Gil ◽  
...  

Nucleoside derivatives are currently used in the treatment of hematologic malignancies. Although intracellular events involved in the pharmacologic action of these compounds have been extensively studied, the role of plasma membrane transporters in nucleoside-derived drug bioavailability and action in leukemia cells has not been comprehensively addressed. We have monitored the amounts of mRNA for the 5 nucleoside transporter isoforms cloned so far (CNT1, CNT2, CNT3, ENT1, and ENT2) in several human cell types and in normal human leukocytes. We then examined the expression patterns of these plasma membrane proteins in patients with chronic lymphocytic leukemia (CLL) and correlated them with in vitro fludarabine cytotoxicity. Despite a huge individual variability in the mRNA amounts for every transporter gene expressed in CLL cells (CNT2, CNT3, ENT1, and ENT2), no relationship between mRNA levels and in vitro fludarabine cytotoxicity was observed. Fludarabine accumulation in CLL cells was mostly, if not exclusively, mediated by ENT-type transporters whose biologic activity was clearly correlated with fludarabine cytotoxicity, which reveals a role of ENT-mediated uptake in drug responsiveness in patients with CLL.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1669-1669
Author(s):  
Kathleen P. Anderson ◽  
Scott C. Crable ◽  
Suzan M. Hammond ◽  
Patrick G. Gallagher ◽  
Clinton H. Joiner

Abstract The K+Cl- cotransporter (KCC) plays a significant role in the maintenance of red cell volume. Activity of the cotransporter is higher in sickle (SS) compared to normal (AA) reticulocytes, and contributes to SS dehydration. Thus, KCC is considered a potential modifier gene for sickle cell disease (SCD). We have demonstrated the presence of transcripts for KCC1, KCC3, and KCC4 in human reticulocytes (Exp.Hem.2005;33:624–31) and shown that one splice variant of KCC1 (KCC1ex1b), which codes for a protein with a small (7aa) alternative N-terminal exon, is detected in AA, but not SS reticulocytes. Studies with murine KCC1 have demonstrated that proteins produced by N-terminal truncation are inactive for K+Cl- cotransport, and function as dominant negative regulators of full-length KCC1 and KCC3 proteins. Since high level expression of this variant in AA cells compared to SS cells might explain the relatively low KCC activity in AA reticulocytes, we have identified the promoter for the KCC1ex1b transcript and investigated the regulatory elements that control its expression. Here we report the involvement of TNFα and NF-ΚB in the transcriptional regulation of the KCC1ex1b variant. Although KCC1ex1b is not expressed in reticulocytes isolated from sickle cell patients, we found that SS erythroid precursor cells cultured in vitro express this variant. SS and AA peripheral blood mononuclear cells were cultured in semi-liquid media with stem cell factor and erythropoietin, and collected after 5, 10, and 14 days in culture. Cells harvested at 14 days and isolated by binding to micromagnetic beads coated with transferrin receptor antibody were 95–98% positive for glycophorin A. RNA was extracted and analyzed by semi-quantitative RT-PCR, using primers for KCC1ex1 and KCC1ex1b. In both AA and SS cells, the transcript level for KCC1ex1b rose over the time in culture, while the KCC1ex1 transcript was constant. This difference between the in vitro and in vivo expression patterns for the KCC1ex1b variant could be explained by regulation via an external factor, such as a cytokine present in the blood of sickle cell patients, but absent in the in vitro culture system. The levels of numerous cytokines, including TNF, VEGF, and various interleukins, are elevated in SCD. We therefore assayed the effect of TNFα on endogenous KCC1ex1b expression in K562 cells by RT-PCR analysis at 24 and 48 hours after the addition of TNFα to the tissue culture medium. The steady-state mRNA levels of the KCC1ex1b variant decreased approximately 40% in response to TNF treatment. The transcription factor NF-ΚB is activated by TNF signaling, and an NF-ΚB consensus site is present in the KCC1ex1b promoter region. We assayed the effect of co-expressing NF-ΚB and our KCC1ex1b promoter constructs in K562 cells. NF-ΚB expression produced an 8-fold decrease in luciferase activity from these promoter constructs indicating NF-ΚB transcriptionally represses this promoter, either directly or indirectly. Our current model proposes that induction or modulation of the expression of the KCC1ex1bvariant could be an important factor in the control of red cell hydration.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4842-4842
Author(s):  
Q.F. Xiao ◽  
Zi X. Chen ◽  
Dan D. Liu ◽  
Jian N. Cen ◽  
Jun He ◽  
...  

Abstract The diagnosis of myelodysplastic syndrome (MDS) is made largely on the dysplastic morphology of BM cells from aspiration or biopsies. Prognosis scored by IPSS is depending on the percentage of marrow myeloblasts and the clonal cytogenetic abnormalities. To expand the understanding of genetic defects in hematopoietic cells of MDS in hope of finding novel genes correlated to pathogenesis and provide possible diagnostic marker for MDS, we have applied microarray to analyze the clinical samples from MDS patients. Total RNAs of CD34+ cells from 8 patients ( 2 RAEBt,2 RAEB,2 RA,1 RAS,1 CAA ) and one healthy people were extracted followed by a double in vitro transcription to circumvent the limited number of CD34+ cells. Following a modified Affymetrix target amplification protocol. Biotinylated cRNA was synthesized from 50 ng total RNA by double-round amplification and hybridized to an Human Genome U133 Plus 2.0 Array (Affymetrix). From the expression profile of 18404 different genes, we revealed that DNTT,MLL3,IL1R2,MAPK1,IGLL1 were down regulated while EGR-1, Rap1GAP or MAF were up regulated compared with normal controls. Most notably, Dlk1 was up regulated in MDS, while down regulated in AML and normal. By real-time RT-PCR we confirmed that in BMNCs the median levels of Dlk1 transcript in patients with RA and RAS were 2.55 (range, 0.00–23.7), RAEB and RAEBt were 8.24(range, 2.01–18.44), AML were 1.88 (range, 0.12–5.13), and other patients were 0.37(range, 0.00–1.79), respectively. The abundance of Dlk1 mRNA in MNCs from most MDS patients was markedly greater than that in the MNCs from others (P <0.05 ). Dlk1 expression in RAEB and RAEBt is markedly higher than AML (P <0.05 ) Forced expression of Dlk1 in transfected K562 cells resulted in faster growth than control cells, affected apoptosis induced by As2O3. and reduced the G2 arrested cells induced by TPA. By using the same experimental system we found that forced expression of Dlk1 can increase the mRNA levels of HES1 and p21WAF1 transcript variant 1. To elucidate the mechanisms we analyzed the levels of phosphorylated-p38 and p38 in Dlk1 transfected K562 cells treated with TPA. Dlk1 inhibited p38 phosphorylation while expression of p38 kept no change. These results support further investigation on the role of Dlk1 in abnormal hematopoiesis in MDSheterogeneous cell component. Diagnosis is currently depending on the dysplastic morphology of.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1090-1090
Author(s):  
Daniela Cilloni ◽  
Cristina Panuzzo ◽  
Francesca Messa ◽  
Francesca Arruga ◽  
Enrico Bracco ◽  
...  

Abstract The FoxO family of transcription factors is regulated by PI3K/Akt induced phosphorylation resulting in nuclear exclusion and degradation. Nuclear FoxO transcribes proapoptotic molecules and cell cycle inhibitors. In CML cells the TK activity of Bcr-Abl leads to the abnormal activation of downstream effectors including PI3K/Akt. The aim of this study was to investigate the role of FoxO3 in Bcr-Abl induced apoptotic arrest and cell growth and the effect of imatinib (IM) induced re-activation of FoxO3 activity in CML progenitor cells. BM cells were collected from 52 CML patients and 20 healthy donors. The expression level of FoxO3 was tested by RQ-PCR. The protein amount and localization was analyzed by Western blot and immunofluorescence, DNA binding activity was measured by EMSA. In addition, FoxO3 was analyzed in CML primary cells and CD34+ cells after IM incubation. Cell cycle and the expression levels of CD47, which has been demonstrated to increased during progression through the cell cycle and stem cell mobilization, was measured by FACS in CD34+ cell population. In addition K562 cells was transfected with pECE-FoxO3 to clarify FoxO3 effects on cell growth and apoptosis. Finally we used our already set up model of Drosophila melanogaster (Dm) transgenic for human Bcr-Abl to study the pathway leading to FoxO3 inactivation. We found that, despite either FoxO3 mRNA levels or protein amount are similar in CML cells compared to controls, FoxO3 protein is equally distributed in the nucleus and cytoplasm in controls but it is completely cytoplasmatic in CML cells and it enters the nucleus during in vivo IM treatment or in vitro IM incubation. Additionally, FoxO3 DNA binding activity in CML patients is completely absent at diagnosis and reappears after IM treatment. Moreover FoxO3 overexpression in transfected cells results into a 49±9 % reduction of proliferation which was further reduced of 75±5 % after IM incubation. Furthermore, we demonstrated that IM incubation results into the reactivation of FoxO3 in Ph+ CD34+ cells inducing quiescence into this population as demonstrated by the comparison of cell cycle kinetics and by a decreased expression of CD47. Finally, the progeny obtained from the crossbreeding of Bcr-Abl flies and flies transgenic for FoxO showed a rescue of FoxO phenotype demonstrating that FoxO inactivation is Bcr-Abl mediated. Overall, these in vitro and in vivo experiments suggest that FoxO3 is inactivated in CML cells and its delocalization is mainly dependant from Bcr-Abl activity. The antiproliferative activity of IM may be mediated by FoxO3 re-localization. On the other side, FoxO3 re-activation induced by IM results into a quiescence of Bcr-Abl CD34+ progenitor cells, which raises a hypothesis that FoxO3 could play a role in IM resistance. This investigation was conducted by CML Correlative Studies Network (CCSN), TOPS, which is sponsored by Novartis Oncology


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3907-3907
Author(s):  
Costanza Bogani ◽  
Paola Guglielmelli ◽  
Niccolò Bartalucci ◽  
Miguel Aracil ◽  
Maria Fe Paz ◽  
...  

Abstract Abstract 3907 Poster Board III-843 Plitidepsin (Aplidin®) is a novel cyclic depsipeptide derived from the marine tunicate Aplidium albicans, currently obtained by chemical synthesis, that is under Phase II clinical development. Plitidepsin is effective against a large panel of tumor cells, and although precise action mechanisms have still to be ascertained the drug induces an oxidative stress, activation of Rac1 GTPase and inhibition of protein phosphatases, overall leading to sustained activation of JNK and p38MAPK. In a previous report (Verrucci M et al, ASH 2008, 2787A) we evaluated Plitidepsin activity in the GATA-1low murine model of myelofibrosis. Plitidepsin corrected thrombocytopenia of myelofibrotic mice, reduced the frequency of megakaryocytes (Mk) and normalized angiogenesis in the bone marrow, and prevented extramedullary hematopoiesis. In the present study, we assessed the effects of Plitidepsin on cell lines harboring homozygous (HEL and UKE-1, a gift of W. Fiedler) or heterozygous (SET2) JAK2V617F mutation and on cells from patients (pts) with myeloproliferative neoplasms (MPN). In a short-term (3 days) proliferation assay we found that Plitidepsin prevented cell growth with IC50 values of 1.0±0.3 nM for HEL, 0.5±0.03 nM for UKE-1, and 0.8±0.02 nM for SET2, that were all lower than 1.5±0.1 nM for the BCR/ABL mutated K562 cell line (P<.001 in case of UKE-1 cells). Also Ba/F3 cells transduced with the V617F allele (a gift of R. Skoda) were found more sensitive to Plitidepsin (IC50= 0.03±0.01 nM) than the wild-type counterpart (IC50= 0.4±0.03 nM; P<0.02). Similar results were obtained using a 14-day clonogenic assay in agar cultures. These data indicated that Plitidepsin was active at very low nanomolar concentrations against cell lines harboring JAK2V617F mutation. We then evaluated the effects of Plitidepsin on the growth of BFU-E, CFU-GM and CFU-Mk from MPN pts; all five Polycythemia Vera (PV) and 4/5 Primary Myelofibrosis (PMF) pts analyzed were JAK2V617F mutated. As shown in the Table, PMF pts presented significantly lower IC50 value than controls (Ctrl; P<.002) for all type of clonogenic progenitors; cells from PMF pts resulted also significantly more sensitive to Plitidepsin than those from PV patients (P<.02), while the difference between PV and Ctrl did not reach the significance level. To evaluate whether Plitidepsin also affected the latest stages of differentiation and maturation of MKs, that is the most overtly affected cell lineage in PMF, we added Plitidepsin on day +7 of a two-stage liquid culture system initiated with CD34+ cells purified from the PB of PMF patients; the generation of CD61+ Mks was measured 5 days later by FACS analysis. However, we found that the number of CD61+ cells was no different between cultures containing or not Plitidepsin, overall suggesting that the drug mainly affected early proliferation of Mk progenitors rather than influencing their differentiation. We then performed single colony genotyping to quantify the proportion of hematopoietic colonies harboring the JAK2V617F mutation which grew in growth factor-supplemented methylcellulose cultures initiated with purified CD34+ cells from PMF patients in the presence of 1 nM Plitidepsin. Initial data in 3 pts were available; in one, the proportion of JAK2-mutated BFU-E colonies decreased from 51% to 27% while no changes were observed in the other two pts. Finally, since a correlation between levels of p27(Kip1) and the response of tumor cells to Plitidepsin has been described, we measured p27 levels in different cell lines after exposure to Plitidepsin. We observed that p27 mRNA levels increased 15-fold and 30-fold in UKE1 and HEL cells, respectively, compared to K562 cells after 24 hr with 1nM Plitidepsin; such an increase was mirrored by a protein content 1.9- to 3.5-fold greater than baseline in UKE-1 cells at 1 and 10 nM Plitidepsin, suggesting that JAK2V617F mutated cells responded to the drug by modulating their p27 levels. Collectively, we provided evidence that Plitidepsin has in-vitro activity against MPN cells, particularly from PMF pts. These results, as well as those which were previously described in the GATA1low murine model, provided the rationale for a clinical trial in patients with myelofibrosis that is being developed within the Myeloproliferative Disorders Research Consortium (MPD-MRC). Plitidepsin IC50 (nM) BFU-E CFU-GM CFU-Mk Ctrl (n=5) 8.7 ± 2.3 8.2 ± 3.5 1.7 ± 0.9 PV (n=5) 5.2 ± 2.0 7.4 ± 4.0 not done PMF (n=5) 1.1 ± 0.6 1.6 ± 0.4 0.4 ± 0.06 Disclosures: Aracil: PharmaMar: Employment. Fe Paz:PharmaMar: Employment. Vannucchi:PharmaMar: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2496-2496 ◽  
Author(s):  
David H Spencer ◽  
Margaret A. Young ◽  
Jeffery M. Klco ◽  
Timothy J. Ley

Abstract HOX genes encode a family of homeodomain transcription factors with important roles in hematopoiesis. Expression of HOX genes is also a common feature of acute myeloid leukemia (AML), and functional studies have suggested that HOX-dependent pathways may contribute to leukemogenesis. Although HOX expression is known to correlate with specific AML mutations, the patterns of expression of all 39 HOX genes in primary AML samples, and their relationships with recurrent AML mutations, are incompletely understood. In addition, little is known about the influence of AML mutations on DNA methylation at the HOX loci, and the relationship between HOX gene expression and methylation in AML. In this study, we carried out a combined analysis of gene expression data from microarray and RNA-sequencing platforms and genome-wide DNA array-based methylation from 189 primary AML samples that have been previously characterized by either whole-genome or whole exome sequencing. We also measured expression and methylation using the same platforms from normal bone marrow subsets, including CD34+ cells, promyelocytes, monocytes, neutrophils and lymphocytes, and obtained expression data from CD34+ hematopoietic precursors generated from in vitro differentiation of human embryonic stem cells. Our analysis confirmed previous work on the general patterns of HOX expression in AML. The HOXA and HOXB genes showed variation both within each cluster and across the AMLs, although high level expression was restricted to a subset of these genes, including HOXA3, HOXA5, HOXA7, HOXA9, HOXA10, HOXB2-HOXB4, and HOXB6, as well as HOX cofactor MEIS1; HOXC and HOXD genes were minimally expressed in all of the samples. These observations were orthogonally validated by RNA-seq, and with a targeted Nanostring expression platform. Consistent with previous studies, MLL-positive AML samples (n=11) expressed only HOXA genes and MEIS1. AML samples with CBFB-MYH11 rearrangements (n=12) showed expression of only MEIS1, and HOXB2-HOXB4 at moderate levels; RUNX1-RUNX1T1 (n=7) and PML-RARA (n=19) samples did not detectably express any HOX genes. In AMLs with a normal karyotype (n=85), we observed two distinct patterns; one pattern displayed little or no HOX gene expression (7/85; 8%), and another displayed canonical expression of a specific subset of the HOXA and HOXB genes and MEIS1 (78/85; 92%) with similar relative HOX gene expression levels in all cases. Comparison of this pattern with normal bone marrow revealed the same HOX expression pattern in normal CD34+ cells; additional analysis showed that this pattern was confined to hematopoietic stem/progenitor cells, but was not seen in more mature cells, including other CD34+ subsets, promyelocytes, monocytes and neutrophils. We also measured HOX gene expression in CD34+ hematopoietic precursors generated from in vitro differentiation of human embryonic stem cells, which revealed expression of only MEIS1 and the canonical HOXB genes, suggesting that activation of these genes may represent the earliest events in the HOX pathway of hematopoietic development. Correlation of HOX expression with recurrent AML mutations by gene set enrichment analysis demonstrated a significant association with NPM1 (P<10-4) and DNMT3A (P<10-2) mutations, but not with other recurrent somatic mutations, including FLT3,IDH1/IDH2, and TET2. Methylation at the HOX loci demonstrated patterns that correlated with HOX expression, including hypomethylation at HOX promoters in samples with high expression. However, additional mutation-specific patterns were apparent. For example, NPM1-mutant AMLs demonstrated a distinct methylation pattern that included hypomethylation at the HOXB3 promoter, which was not shared with CBFB-MYH11 cases or other AMLs with HOXB3 expression. In summary, our comprehensive analysis demonstrates canonical expression and methylation patterns at the HOX loci in AML. These patterns correspond to specific recurrent AML mutations, and the dominant pattern in most normal karyotype AMLs mimics the signature of hematopoietic stem cells. This supports previous observations of developmental regulation of HOX genes in hematopoiesis, and implies that this normal stem cell signature is “captured” in the majority of AMLs with normal karyotype. In addition, distinct methylation patterns at HOX loci suggest that multiple regulatory mechanisms are involved in HOX expression in AML. Disclosures: No relevant conflicts of interest to declare.


2000 ◽  
Vol 182 (21) ◽  
pp. 6192-6202 ◽  
Author(s):  
Scott Peterson ◽  
Robin T. Cline ◽  
Hervé Tettelin ◽  
Vasily Sharov ◽  
Donald A. Morrison

ABSTRACT Competence for genetic transformation in Streptococcus pneumoniae is coordinated by the competence-stimulating peptide (CSP), which induces a sudden and transient appearance of competence during exponential growth in vitro. Models of this quorum-sensing mechanism have proposed sequential expression of several regulatory genes followed by induction of target genes encoding DNA-processing-pathway proteins. Although many genes required for transformation are known to be expressed only in response to CSP, the relative timing of their expression has not been established. Overlapping expression patterns for the genes cinA andcomD (G. Alloing, B. Martin, C. Granadel, and J. P. Claverys, Mol. Microbiol. 29:75–83, 1998) suggest that at least two distinct regulatory mechanisms may underlie the competence cycle. DNA microarrays were used to estimate mRNA levels for all known competence operons during induction of competence by CSP. The known competence regulatory operons, comAB, comCDE, andcomX, exhibited a low or zero initial (uninduced) signal, strongly increased expression during the period between 5 and 12 min after CSP addition, and a decrease nearly to original values by 15 min after initiation of exposure to CSP. The remaining competence genes displayed a similar expression pattern, but with an additional delay of approximately 5 min. In a mutant defective in ComX, which may act as an alternate sigma factor to allow expression of the target competence genes, the same regulatory genes were induced, but the other competence genes were not. Finally, examination of the expression of 60 candidate sites not previously associated with competence identified eight additional loci that could be induced by CSP.


Blood ◽  
2006 ◽  
Vol 107 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Weihua Zeng ◽  
Akira Miyazato ◽  
Guibin Chen ◽  
Sachiko Kajigaya ◽  
Neal S. Young ◽  
...  

Abstract Hematopoietic effects of interferon-γ (IFN-γ) may be responsible for certain aspects of the pathology seen in bone marrow failure syndromes, including aplastic anemia (AA), paroxysmal nocturnal hemoglobinuria (PNH), and some forms of myelodysplasia (MDS). Overexpression of and hematopoietic inhibition by IFN-γ has been observed in all of these conditions. In vitro, IFN-γ exhibits strong inhibitory effects on hematopoietic progenitor and stem cells. Previously, we have studied the transcriptome of CD34 cells derived from patients with bone marrow failure syndromes and identified characteristic molecular signatures common to some of these conditions. In this report, we have investigated genome-wide expression patterns after exposure of CD34 and bone marrow stroma cells derived from normal bone marrow to IFN-γ in vitro and have detected profound changes in the transcription profile. Some of these changes were concordant in both stroma and CD34 cells, whereas others were specific to CD34 cells. In general, our results were in agreement with the previously described function of IFN-γ in CD34 cells involving activation of apoptotic pathways and immune response genes. Comparison between the IFN-γ transcriptome in normal CD34 cells and changes previously detected in CD34 cells from AA and PNH patients reveals the presence of many similarities that may reflect molecular signature of in vivo IFN-γ exposure.


Sign in / Sign up

Export Citation Format

Share Document