Novel Etodolac Analog SDX-308 (CEP-18082) Induces Cytotoxicity in Multiple Myeloma Cells Associated with Inhibition of Wnt/β-Catenin Pathway.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5005-5005 ◽  
Author(s):  
Hiroshi Yasui ◽  
Teru Hideshima ◽  
Hiroshi Ikeda ◽  
Enrique M. Ocio ◽  
Tanyel Kiziltepe ◽  
...  

Abstract In a previous study we reported that R-enantiomer of etodolac (R-etodolac) which is under investigation in Phase II clinical trials in chronic lymphocytic leukemia, induces potent cytotoxicity at clinically relevant concentrations in both drug-sensitive and drug-resistant multiple myeloma (MM) cell lines, as well as in patient MM tumor cells. In this study, we demonstrated that SDX-308 (CEP-18082), a novel analog of etodolac, has more potent cytotoxicity than R-etodolac against MM cell lines and tumor cells from patients with refractory MM. It also induces cytotoxicity against bortezomib-resistant tumor cells. The molecular mechanisms whereby SDX-308 triggers MM cell cytotoxicity were next delineated. SDX-308 induces apoptosis via caspase-8/-9/-3 activation and poly(ADP-ribose) polymerase PARP cleavage. It strongly inhibits Wnt/β-catenin pathway by blockade of nuclear translocation of β-catenin, followed by significant inhibition of transcription and expression of target proteins. These target proteins include cell cycle regulatory c-myc molecules and anti-apoptotic survivin molecules. Neither interleukin-6 nor insulin-like growth factor-1, which induce MM cell growth and abrogate Dex-induced apoptosis, protect against growth inhibition triggered by SDX-308. Importantly, growth of MM cells adherent to bone marrow (BM) stromal cells is also significantly inhibited by SDX-308. Our data therefore indicate that the novel etodolac analog SDX-308 has more potent cytotoxicity in MM cells than R-etodolac even in the context with BM microenvironment, providing the preclinical rationale to conduct clinical trials of this agent to improve patient outcome in MM.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1580-1580
Author(s):  
Hiroshi Yasui ◽  
Teru Hideshima ◽  
Paola Neri ◽  
Janice Jin ◽  
Tanyel Kiziltepe ◽  
...  

Abstract SDX-101, the less toxic R-isomer of the commercially available non-steroidal inflammatory drug R,S-etodolac (Lodine®), lacks COX inhibitory activity and is being investigated in Phase II clinical trials in chronic lymphocytic leukemia. Recently, we reported that R-etodolac, at clinically relevant concentrations, induces potent in vitro cytotoxicity in drug-sensitive and conventional drug-resistant multiple myeloma (MM) cell lines, as well as in primary tumor cells from MM patients. R-etodolac triggers caspase/poly-ADP-ribose polymerase (PARP) cleavage and downregulates of cyclin D1 expression (Yasui et al. Blood 2005). Importantly, R-etodolac at sub-cytotoxic doses upregulates Mcl-1s and synergistically enhances dexamethasone (Dex)-induced caspase-dependent apoptosis in Dex-sensitive MM.1S cells. Combination of R-etodolac with Dex enhances cytotoxicity in Dex resistant OPM1 MM cells and in Dex-resistant patient MM cells in vitro. We further studied the in vivo anti-tumor effect of combined R-etodolac and Dex in SCID mice injected subcutaneously with OPM1 human MM cells. While oral treatment of SCID mice with R-etodolac alone (250 mg/kg/d) or Dex alone (1 mg/kg/d) did not induce any significant reduction of tumor volume compared with control (PBS), the combination of R-etodolac and Dex inhibited tumor growth synergistically (synergism quotient = 1.6) and significantly (p = 0.023), suggesting that R-etodolac may reverse Dex resistance in MM. Finally, we demonstrated that racemic SDX-308, a novel indole-pyran structural analog of etodolac, has 10-fold more potent cytotoxicity than R-etodolac in MM cell lines both sensitive and resistant to conventional therapies, as well as in patient’s MM cells. Moreover, SDX-308, like R-etodolac, can overcome the viability and proliferative enhancing effects of exogeneous IL-6, IGF-1, or bone marrow stroma cells. These combined observations indicate that SDX-308 is a promising more potent second generation analog of R-etodolac for MM therapy. Our data suggest that R-etodolac and its novel analog SDX-308 overcome resistance to some conventional therapeutics used for MM, and provide preclinical rationale to conduct clinical trials of R-etodolac and SDX-308 to treat MM.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1371-1371
Author(s):  
Antonino Neri ◽  
Sandra Marmiroli ◽  
Pierfrancesco Tassone ◽  
Luigia Lombardi ◽  
Lucia Nobili ◽  
...  

Abstract The PKC pathway has been shown to play a role in the regulation of cell proliferation in several hematologic malignancies. In this study we tested the oral PKC-β inhibitor, Enzastaurin (LY317615 - Eli Lilly) for its therapeutic efficacy in Multiple Myeloma (MM). We first analyzed PKC-β I and II expression by Western blot in a panel of 19 human MM cell lines, showing that 9 cell lines express either 1 or both isoforms. We next examined the growth inhibition effect of Enzastaurin in the same panel of MM cell lines using either WST-1 or MTT assay and cell viability assessment by Tripan Blue exclusion. Eighteen cell lines have IC50 value ranging from 1,2 μM to 12,5 μM. To examine molecular mechanisms whereby Enzastaurin induces cytotoxicity, we performed cell cycle profiling using PI and observed a significant increase of the percentage of cells in the sub G0–G1 fraction. To determine whether Enzastaurin-induced cell death is mediated by apoptosis, we studied by ELISA and Western blot caspase 3 and PARP cleavage. We observed induction of caspase 3 and PARP cleavage in a dose and time dependent fashion. Notably, the broad caspase (Z-VAD-FMK) inhibitor reduced Enzastaurin-induced cytotoxicity. We next determined whether Enzastaurin could inhibit AKT phosphorylation in MM cell lines with constitutive phosphorylation of AKT. Enzastaurin decreased AKT phosphorylation in a dose and time dependent fashion. Phosphorylation of GSK3β, a downstream target protein of AKT, was also markedly inhibited. Phosphorylation of PDK-1, a known upstream activator of AKT, was not affected by Enzastaurin. In conclusion, our results indicate that Enzastaurin-induced cytotoxicity is mediated via activation of caspase. This effect is associated with significant inhibition of AKT activity and its downstream target GSK3 β. Enzastaurin does not alter the phosphorylation of the upstream AKT activator PDK-1. These data suggest that Enzastaurin inhibit AKT signalling pathway and support its evaluation in a murine model of human MM.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 725-725
Author(s):  
Francesca Cottini ◽  
Teru Hideshima ◽  
Martin Sattler ◽  
Federico Caligaris-Cappio ◽  
Kenneth C. Anderson ◽  
...  

Abstract Abstract 725 Background: Genome integrity plays a crucial role in the development of normal plasma cells to eliminate aberrant ones. Multiple myeloma (MM) is a plasma cell malignancy characterized by complex heterogeneous cytogenetic abnormalities. MM cells show constitutive DNA Damage Response (DDR) and activate compensatory mechanisms to prevent DNA-damage mediated apoptosis. Here we define the molecular mechanisms of these protective effects. Methods: A panel of 15 MM cell lines was used. Blood and BM samples from healthy volunteers and MM patients were obtained after informed consent and subjected to Ficoll-Paque density sedimentation to get mononuclear cells (MNCs). Patient MM cells were isolated from BM MNCs by CD138-positive selection. Lentiviral delivery system was used for expression and knock-down of YAP1 in KMS-18, KMS-20, MM.1S and UTMC-2 MM cell lines. The biologic impact of YAP1 phenotype was evaluated using cell growth, viability and apoptosis assays. Results: We confirmed that a wide range of MM patient cells and MM cell lines have markers of constitutive DDR, including phosphorylation of H2A.X, ATM, ATR, Chk2 and Chk1, assessed by western blot analysis and immunofluorescence. However, these MM cells do not show basal level of apoptosis. Specifically, cleaved forms of caspase 3 and PARP are lacking in non-treated cells, and the absence of co-expression of cleaved caspase 3 with phospho-H2A.X by immunofluorescence confirms that phospho-H2A.X positive cells are viable cells. Since DDR is present in both p53-wild-type (wt) and p53-mutated cell lines, we examined whether ABL1/YAP1/p73 axis represents an alternative and crucial pathway to avoid DNA-damage mediated apoptosis. Indeed, ABL1 is up-regulated and predominantly localizes in the nucleus, a potential apoptotic stimulus, in MM cells, as assessed by western blot and immunofluorescence. To define if ABL1 nuclear localization was triggered by DDR, we treated MM cells with a specific ATM inhibitor (Ku55933) and a DNA damaging agent, doxorubicin. Inhibition of DDR in both p53 wt cell lines (MM.1S and H929) and p53 mutated cell lines (UTMC-2, JJN-3 and KMS-20) causes ABL1 cytoplasmic retention, while doxorubicin increases ABL1 nuclear translocation. Co-treatment with doxorubicin and ABL1 inhibitor STI-571 rescues MM cells from doxorubicin-mediated cell death. In particular, apoptotic cells decrease from 47.2% to 21.5% in U266, from 55.3% to 12.4% in MM.1S, and from 57.9% to 19.1% in UTMC-2 cells in response to combination treatment. To delineate the molecular mechanisms whereby MM cells repress ABL1 pro-apoptotic function, we focused on YAP1, a downstream target of the Hippo pathway involved in ABL1 cascade. We explored a large dataset of aCGH data on MM patients and discovered that YAP1 genomic locus (chr. 11q22) is deleted, associated with BIRC2 and BIRC3 in 11% of patients. This genetic abnormality was also found in KMS-18 and KMS-20 cell lines. Although YAP1 expression was normal in peripheral blood MNCs (PBMCs), its expression was decreased in the majority of patient MM cells and MM cell lines regardless of the presence of focal deletion. Importantly, low expression of YAP1 is associated with poor prognosis of MM patients. To further delineate the biologic significance of YAP1 in MM cells, we re-expressed pLENTI4-YAP1-EGFP in MM cell lines with either YAP1 deletion (KMS-18, KMS-20) or YAP1 low expression (MM.1S). We also silenced YAP1 using two different specific shRNAs in UTMC-2 MM cell line. As expected, YAP1 re-expression reduces cellular growth and increases apoptosis in all cell lines tested (25.7%, 37.1% and 32.3% apoptotic KMS-20, KMS-18 and MM.1S cells, respectively), condition that was further enhanced by doxorubicin treatment. Previous studies have shown that P73 is expressed in MM even though at low levels and we here show that they inversely correlate with YAP1 protein expression. Importantly, YAP1 re-expression increases p73 stability and promotes transcription of p73-target genes including BAX, PUMA and p21. In contrast, UTMC-2-YAP1−/− cells show improved survival with lower levels of basal apoptosis and higher resistance to treatment with bortezomib or doxorubicin. Conclusion: YAP1 mediates a strong apoptotic signal for MM cells. Thus, activation and/or overexpression of YAP1 represent a novel therapeutic strategy to improve outcome of patients with MM. Disclosures: Anderson: Celgene, Millennium, BMS, Onyx: Membership on an entity's Board of Directors or advisory committees; Acetylon, Oncopep: Scientific Founder and Scientific Founder, Scientific Founder and Scientific Founder Other.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuejiao Huang ◽  
Xianting Huang ◽  
Chun Cheng ◽  
Xiaohong Xu ◽  
Hong Liu ◽  
...  

Abstract Background Cell adhesion-mediated drug resistance (CAM-DR) is a major clinical problem that prevents successful treatment of multiple myeloma (MM). In particular, the expression levels of integrin β1 and its sub-cellular distribution (internalization and trafficking) are strongly associated with CAM-DR development. Methods Development of an adhesion model of established MM cell lines and detection of Numbl and Integrinβ1 expression by Western Blot analysis. The interaction between Numbl and Integrinβ1 was assessed by a co-immunoprecipitation (CO-IP) method. Calcein AM assay was performed to investigate the levels of cell adhesion. Finally, the extent of CAM-DR in myeloma cells was measured using cell viability assay and flow cytometry analysis. Results Our preliminary date suggest that Numbl is differentially expressed in a cell adhesion model of MM cell lines. In addition to binding to the phosphotyrosine-binding (PTB) domain, the carboxyl terminal of Numbl can also interact with integrin β1 to regulate the cell cycle by activating the pro-survival PI3K/AKT signaling pathway. This study intends to verify and elucidate the interaction between Numbl and integrin β1 and its functional outcome on CAM-DR. We have designed and developed a CAM-DR model using MM cells coated with either fibronectin or bone marrow stromal cells. We assessed whether Numbl influences cell-cycle progression and whether it, in turn, contributes to activation of PI3K/AKT signal pathway through the adjustment of its carboxyl end. Finally, we showed that the interaction of Numbl with integrin β1 promotes the formation of CAM-DR in MM cells. Conclusions Our findings elucidated the specific molecular mechanisms of CAM-DR induction and confirmed that Numbl is crucial for the development of CAM-DR in MM cells.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Emine Öksüzoğlu ◽  
Gül Kozalak

AbstractBackgroundMultiple myeloma (MM), a malignancy of plasma cells, is the second most prevalent hematological cancer. Bortezomib is the most effective chemotherapeutic drug used in treatment. However, drug-resistance prevents success of chemotherapy. One of the factors causing drug-resistance is dysfunction of apoptotic-pathways. This study aimed to evaluate the relationship between expression levels of Bcl-2, Bax, caspase-3 and p-53 genes involved in apoptosis and the development of bortezomib-resistance in MM cell lines.Materials and methodsMultiple myeloma KMS20 (bortezomib-resistant) and KMS28 (bortezomib-sensitive) cell lines were used. 3-[4,5-Dimethylthiazol-2-yl] 1-2,5-diphenyltetrazolium bromide (MTT) assay was performed to determine IC50 values of bortezomib. RNAs were isolated from bortezomib-treated cell lines, followed by cDNA synthesis. Expression levels of the genes were analyzed by using q-Realtime-PCR.ResultsAs a result, Bcl-2/Bax ratio was higher in KMS20 (resistant) cells than in KMS28 (sensitive) cells. Expression of caspase-3 decreased in KMS20-cells, whereas increased in KMS28-cells. The results indicate that apoptosis was suppressed in resistant cells.ConclusionThese findings will enable us to understand the molecular mechanisms leading to drug-resistance in MM cells and to develop new methods to prevent the resistance. Consequently, preventing the development of bortezomib resistance by eliminating the factors which suppress apoptosis may be a new hope for MM treatment.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3456-3456
Author(s):  
Hiroshi Yasui ◽  
Teru Hideshima ◽  
Aldo M. Roccaro ◽  
Norihiko Shiraishi ◽  
Makoto Hamasaki ◽  
...  

Abstract Sphingosine and its metabolites are bioactive sphingolipids involved in lipid biosynthesis, signal transduction and apoptosis. FTY720, a synthetic sphingosine analogue of myriocine derived from culture filtrates of Isaria sinclairii, has been reported to interact with the sphingosine-1-phosphate specific G protein-linked receptors (S1P1, 3, 4 and 5) (Mandala S et al. Science, 2002) and alter the migration and homing of lymphocytes, thereby inhibiting the immune response (Matloubian M et al. Nature, 2004). Recent studies have also shown that FTY720 induces growth inhibition and/or apoptosis in human cancer cells in vitro as well as in vivo murine model (Azuma H et al. Cancer Research, 2002). To date, however, the biologic sequelae of inhibiting sphingosine-1-phosphate activity on multiple myeloma (MM) cells have not been demonstrated. In the present study, we examined whether FTY720 triggers anti MM activity. FTY720 induced potent cytotoxicity against MM cell lines including MM.1S, U266, RPMI8226, with IC50 at 24 h of 3.0 – 7.0 mM, assessed by trypan-blue exclusion and MTT assays. FTY720 also inhibited growth of doxorubicin (Dox)-resistant RPMI8226-Dox40 and dexamethasone (Dex)-resistant MM.1R cell lines, with IC50 values similar to the parental drug-sensitive cell lines. In contrast, no cytotoxicity of FTY720 was recognized against human peripheral blood mononuclear cells from normal healthy donors. The combination of Dex with FTY720 demonstrated enhanced cytotoxicity compared to either agent alone. Importantly, neither interleukin-6 (IL-6) nor insulin like growth factor-I (IGF-I), which induces MM cell growth and protection against Dex-induced apoptosis, protected against FTY720-induced growth inhibition. The anti-MM mechanisms of action of FTY720 were next studied, and FTY720 induced caspase-dependent apoptosis in MM cell lines: FTY720 triggers caspase−8, −9 and −3 cleavage, followed by PARP cleavage and DNA fragmentation, as confirmed by Western blotting and agarose gel electrophoresis, respectively. Moreover, FTY720 abrogated both IL-6 mediated phosphorylation of Akt-1, STAT3 and p42/44MAPK, and IGF-I mediated Akt-1 phosphorylation. Importantly, paracrine MM cell growth with bone marrow stromal cells was strongly inhibited by FTY720. These results suggest that FTY720 overcomes drug resistance in MM cells and, providing the rationale for its clinical evaluation to improve patient outcome in MM.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 952-952 ◽  
Author(s):  
Shinichi Kitada ◽  
Edward Monosov ◽  
Sharon Chandler ◽  
Esther D. Avery ◽  
Thomas J. Kipps ◽  
...  

Abstract Altered expression of Bcl-2-family protein plays a central role in apoptosis dysregulation in cancer and leukemia, promoting malignant cell expansion and contributing to chemoresistance. Anti-apoptotic Bcl-2-family proteins Bcl-2 and Bcl-XL have been thoroughly validated as drug discovery targets for cancer, and strategies for inhibiting these proteins have been devised based on mimicking their endogenous antagonists, the BH3-only proteins. CLL (chronic lymphocytic leukemia) is a quintessential example of a human malignancy caused by defective programmed cell death, representing the most common form of adult leukemia in North America and Europe. Over-expression of the Bcl-2 protein is one of the most consistent and prominent etiological factors associated with this disease. In this study, we evaluated biological effects of ABT-737, a novel fully synthetic Bcl-2/Bcl-XL antagonist developed at Abbott Laboratories, on CLL cells and B-lymphoma cell lines in vitro. ABT-737 induced a striking dose-dependent apoptosis in all CLL cells tested, with a Lethal Dose 50% (LD50) of 3–10 nM for 10 of 11 CLL samples. ABT-737 exhibited similar activity against chemo-naive cells as well as extensively treated, relapsed-disease. In contrast, an enantiomer of ABT-737 with little affinity for Bcl-2 and Bcl-XL was inactive at concentrations up to 1 μM, demonstrating specificity. Similarly, ABT-737 induced striking dose-dependent apoptosis in B-lymphoma cell lines, such as 380 lymphoma cell line which over-expressed Bcl-2 as a result of t14:18 translocation, with the LD50 ratio for ABT-737:Enantiomer control of approximately 1,000. At concentrations up to 0.1 μM, ABT-737 had no cytotoxic action on normal T-lymphocytes isolated from peripheral blood collected from healthy individuals. In addition, CLL cells were at least 10 fold more sensitive to ABT-737 than normal CD19-positive B-lymphocytes isolated from healthy individuals. Moreover, ABT-737 induced caspase 3 activation and PARP cleavage within 2 hours in CLL B-cells, while zVAD-fmk completely blocked caspase 3 activation and PARP-cleavage. The mechanism of ABT-737 was further validated by confocal time-lapsed microscopy experiments, where the active compound (but not enantiomer control) was demonstrated to displace a Green Fluorescent Protein (GFP)-tagged BH3-containing protein from wild-type Bcl-XL localized at mitochondrial surfaces in intact tumor cell lines. In contrast, active compound failed to displace GFP-BH3 protein from the mitochondrial surface of cells expressing mutants of Bcl-XL purposely engineered to be incapable of binding ABT-737. Taken together, these data strongly suggest that ABT-737 is a mechanism-based inhibitor of Bcl-2 and Bcl-XL that warrants further evaluation for the possible treatment of CLL and other malignancies linked to over-expression of Bcl-2 or Bcl-XL, where chemorefractory states represent a barrier to successful eradication of cancer.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1593-1593
Author(s):  
Tanyel Kiziltepe ◽  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
Noopur Raje ◽  
Norihiko Shiraishi ◽  
...  

Abstract Multiple myeloma (MM) is currently an incurable hematological malignancy. A major reason for the failure of currently existing therapies is the chemotherapeutic resistance acquired by the MM cells upon treatment. Overexpression of glutathione S-transferases (GST) has been shown as one possible mechanism of anti-cancer drug resistance in a broad spectrum of tumor cells. JS-K (O2-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) belongs to a class of pro-drugs which are designed to release nitric oxide (NO) on reaction with GST. JS-K can possibly turn GST overexpression to the tumor’s disadvantage by (1) consuming intracellular GSH and preventing drug inactivation; and (2) by exposing tumor cells to high intracellular concentrations of NO. JS-K has potent in vitro and in vivo anti-leukemic activity. The purpose of the present study is to examine the biological effects of JS-K on human MM cells. We demonstrate that JS-K has significant in vitro cytotoxicity on MM cell lines, with an IC50 of 0.3-2 mM at 48 hours. JS-K also induces cytotoxicity on cell lines that are resistant to conventional chemotherapy (i.e., MM1R, RPMI-Dox40, RPMI-LR5, RPMI-MR20). Importantly, no cytotoxic effects of JS-K were detected on peripheral blood mononuclear cells (PBMNC) obtained from healthy volunteers at these doses. Moreover, JS-K could overcome the survival and growth advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor-1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells (BMSC). JS-K caused a transient G2/M arrest followed by apoptosis, as determined by flow cytometric analysis using PI, Annexin V and Apo2.7 staining. JS-K-induced apoptosis was associated with caspase 8, 7, 9 and 3 activation. Interestingly, Fas was upregulated by JS-K, suggesting the involvement of death receptor pathway in induction of apoptosis. JS-K also triggered Mcl-1 cleavage and Bcl-2 phosphorylation, suggesting the involvement of mitochondrial pathway. In addition, apoptosis inducing factor (AIF), endonuclease G (EndoG) and cytochrome c were released into the cytosol during apoptosis. Taken together, these findings suggest the involvement of both intrinsic and extrinsic apoptotic pathways in JS-K-induced apoptosis in MM cells. In summary, our studies demonstrate that JS-K induces apoptosis and overcomes in vitro drug resistance in MM cells. Therefore, JS-K is a novel compound which carries significant potential to be included in the repertoire of existing treatment modalities for MM. Ongoing studies are delineating the mechanism of action of JS-K to provide the preclinical rationale for combination therapies to overcome drug resistance and improve patient outcome.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3410-3410
Author(s):  
Teru Hideshima ◽  
Hiroshi Yasui ◽  
Laurence Catley ◽  
Noopur Raje ◽  
Dharminder Chauhan ◽  
...  

Abstract Perifosine (NSC 639966; Keryx Biopharmaceuticals, New York, NY) is a synthetic novel alkylphospholipid, a new class of anti-tumor agents which potently inhibits Akt (PKB) activity. Our previous studies have shown that Perifosine induces significant cytotoxicity in MM cells triggered by c-Jun NH2-terminal kinase (JNK) activation followed by caspase-8, caspase-9, and PARP cleavage even in the presence of cytokines (ie, IL-6 and IGF-1) or bone marrow stromal cell (BMSCs). Importantly, MEK inhibitor and bortezomib enhance Perifosine-induced cytotoxicity. It has also shown significant anti-tumor activity in a human MM cell xenograft mouse model (Hideshima et al. Blood2006, 107:4053–4062). In this study, we further delineated molecular mechanisms whereby Perifosine triggers cytotoxicity as a single agent and in combination with bortezomib in MM cells. In most MM cell lines, the IC50 for Perifosine-induced cytotoxicity is 5–10 μM range assessed by MTT assay at 24h; however, apoptosis assessed by APO2.7 staining, varied in each cell line. Moreover, neither the degree of JNK phosphorylation nor caspase-8/9/PARP cleavage correlated with Perifosine-induced cytotoxicity. Therefore we further examined expression level of anti-apoptotic proteins in MM cell lines and found that survivin, which has a crucial role in regulation of caspase-3 activity, was markedly downregulated by Perifosine treatment in a time- and dose-dependent fashion, without affecting expression of other anti-apoptotic proteins (ie, cIAP, XIAP, Bcl-2, Bcl-xL). Since survivin is a known downstream protein of β-catenin/TCF-4 cascade, we next hypothesized that Perifosine may inhibit β-catenin activity. As expected, Perifosine significantly downregulated both phosphorylation and protein expression of β-catenin, associated with downregulation of survivin and enhanced caspase-3 cleavage. Real-time PCR confirmed that gene expression of survivin was suppressed 35% and 55% after 3h and 6h Perifosine treatment, respectively. Since β-catenin is a substrate of proteasomes, we further examined whether bortezomib could augment survivin expression by blocking its degradation. Importantly, bortezomib significantly upregulated β-catenin and survivin, which was blocked in the presence of Perifosine. These results suggest that inhibition of bortezomib-induced survivin expression, at least in part, accounts for enhanced bortezomib-induced cytotoxicity by Perifosine. Based upon these preclinical studies, a rational combination trial of bortezomib with Perifosine to treat relapsed refractory MM is currently ongoing.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3460-3460 ◽  
Author(s):  
Yu-Tzu Tai ◽  
Xian-Feng Li ◽  
Iris Breitkreutz ◽  
Weihua Song ◽  
Peter Burger ◽  
...  

Abstract Activation of the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK) signaling pathway mediates tumor cell growth in many cancers, including human multiple myeloma (MM). Specifically, this pathway mediates MM cell growth and survival induced by cytokines/growth factors (i.e. IL-6, IGF-1, CD40, BAFF) and adhesion to bone marrow stromal cells (BMSCs), thereby conferring resistance to apoptosis in the bone marrow (BM) milieu. In this study, we therefore examined the effect of the MEK1/2 inhibitor AZD6244 (ARRY-142886), on human MM cell lines, freshly isolated patient MM cells and MM cells adhered to BMSCs. AZD6244, inhibits constitutive and cytokine (IL-6, IGF-1, CD40)-stimulated ERK1/2, but not AKT phosphorylation. Importantly, AZD6244 inhibits the proliferation and survival of human MM cell lines, regardless of sensitivity to conventional chemotherapy, as well as freshly isolated patient MM cells. AZD6244 induces apoptosis in patient MM cells even in the presence of BMSCs, as evidenced by caspase 3 activity and PARP cleavage at concentrations as low as 20 nM. AZD6244 overcomes resistance to apoptosis in MM cells conferred by IL-6 and BMSCs, and inhibits IL-6 secretion induced by MM adhesion to BMSCs. AZD6244 suppresses MM cell survival/growth signaling pathways (i.e., STAT3, Bcl-2, cyclin E1, CDK1, CDK3, CDK7, p21/Cdc42/Rac1-activated kinase 1, casein kinase 1e, IRS1, c-maf) and up-regulates proapoptotic cascades (i.e., BAX, BINP3, BIM, BAG1, caspase 3, 8, 6). AZD6244 also upregulates proteins triggering cell cycle arrest (i.e. p16INK4A, p18INK4C, p21/WAF1 [Cdkn1a], p27 [kip1], p57). In addition, AZD6244 inhibits adhesion molecule expression in MM cells (i.e. integrin a4 [VLA-4], integrin b7, ICAM-1, ICAM-2, ICAM-3, catenin a1, c-maf) associated with decreased MM adhesion to BMSCs. These pleiotropic proapoptotic, anti-survival, anti-adhesion and -cytokine secretion effects of AZD6244 abrogate BMSC-derived protection of MM cells, thereby sensitizing them to both conventional (dexamethasone) and novel (perifosine, lenalidomide, and bortezomib) therapies. In contrast, AZD6244 has minimal cytotoxicity in BMSCs and does not inhibit DNA synthesis in CD40 ligand-stimulated CD19 expressing B-cells derived from normal donors at concentrations toxic to MM cells (between 0.02–2 mM). Furthermore, AZD6244 inhibits the expression/secretion of osteoclast (OC)-activating factors (i.e., macrophage inflammatory protein (MIP)-1a, MIP-1b, IL-1b, VEGF) from MM cells. It also downregulates MM growth and survival factors (IL-6, BAFF, APRIL) in OC cultures derived from MM patient peripheral blood mononuclear cells (PBMCs). Significantly, AZD6244 inhibits OC differentiation from MM PBMCs (n=10) in a dose-dependent manner. Together these results provide the preclinical basis for clinical trials with AZD6244 (ARRY-142886) in MM.


Sign in / Sign up

Export Citation Format

Share Document