Defining the Role of Monocytes in Heparin-Induced Thrombocytopenia (HIT): Insights from a Murine HIT Model.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 280-280
Author(s):  
Lubica Rauova ◽  
Douglas B. Cines ◽  
Mortimer Poncz

Heparin-induced thrombocytopenia (HIT) is an iatrogenic disorder seen in 1–5% of patients exposed to unfractionated heparin. One unusual feature of HIT is that affected patients often have only moderate thrombocytopenia yet suffer severe, life-threatening thrombosis. We have previously defined the importance of PF4:glycosaminoglycan (GAG) antigenic complexes on the surface of circulating platelets in the development of thrombocytopenia using mice that express varying levels of human PF4 (hPF4+/+) as well as Fc γRIIA on the platelet surface after infusing the animals with a monoclonal antibody (KKO) that demonstrates HIT-like properties. Because HIT antibodies have been reported to activate monocytes to produce tissue factor in vitro, we further examined their role both in vitro and in vivo in the murine HIT model. Monocytes bind PF4 onto their surface forming antigenic PF4:GAG complexes recognized by KKO. Monocytes express antigenic complexes at low levels of PF4, a setting in which none can be demonstrated on platelets. Furthermore, monocytes express antigenic complexes at heparin concentrations that completely dissociate antigen from the surface of platelets. We then investigated the role of monocytes in a murine model of HIT. Monocytes were depleted by IV injection of 200 μL of clodronate-containing liposomes (Encapsula Nano Sciences) 12 hrs prior to IP injection of 200 μg of KKO. Over 92% of circulating monocytes were depleted for >24 hrs with a return to near baseline by 72 hrs. In co-transgenic hPF4+/+/FcγRIIA mice, clodronate did not cause a significant fall in platelet count at 4 hrs, but counts fell to 30 ± 14% of baseline by 24 hrs vs. 70 ± 23% of baseline after injection of control liposomes or no liposomes (p<0.001), thrombocytopenia persisted for 72 hrs. Nevertheless, monocyte depletion inhibited thrombosis in the HIT model. Rose Bengal (500 mg/kg) was injected and the right carotid artery injury was exposed to 3 mW green (540 nm) light for 5 min followed by an IV injection of KKO (500 μg/kg). 4 of 5 mice that did not receive liposomes and 4 of 5 mice that received control liposomes 16–24 hrs prior to KKO developed thrombosis, in contrast to 1 of 5 clodronate liposome-treated mice (p<0.01 vs. all controls) in spite of having platelet counts of 860,000 ± 185,000/μL. These studies show that antibody mediated activation of monocytes contributes to the initiation of HIT, while intravascular activation of platelets contributes to the development of thrombocytopenia. These studies also suggest that depletion of monocytes may be a novel target for therapeutic intervention in the early stages of the disease.

1997 ◽  
Vol 77 (02) ◽  
pp. 376-382 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryThe possible involvement of secreted platelet substances in agonist- induced [Ca2+]i increases was investigated by comparing these increases in aspirin-treated, fura-2-loaded normal platelets and platelets from patients with storage pool deficiencies (SPD). In the presence and absence of extracellular calcium, the [Ca2+]i response induced by 10 µM ADP, but not those induced by 0.1 unit/ml thrombin, 3.3 µM U46619, or 20 µM serotonin, was significantly greater in SPD platelets than in normal platelets, and was increased to the greatest extent in SPD patients with Hermansky-Pudlak syndrome (HPS), in whom the dense granule deficiencies are the most severe. Pre-incubation of SPD-HPS and normal platelets with 0.005-5 µM ADP produced a dose-dependent inhibition of the [Ca2+]i response induced by 10 µ M ADP, but did not alter the [Ca2+]i increases induced by thrombin or U46619. Within a limited range of ADP concentrations, the dose-inhibition curve of the [Ca2+]i response to 10 µM ADP was significantly shifted to the right in SPD-HPS platelets, indicating that pre-incubation with greater amounts of ADP were required to achieve the same extent of inhibition as in normal platelets. These results are consistent with a hypothesis that the smaller ADP-induced [Ca2+]i increases seen in normal platelets may result from prior interactions of dense granule ADP, released via leakage or low levels of activation, with membrane ADP receptors, causing receptor desensitization. Addition of apyrase to platelet-rich plasma prior to fura-2 loading increased the ADP-induced [Ca2+]i response in both normal and SPD-HPS platelets, suggesting that some release of ADP derived from both dense granule and non-granular sources occurs during in vitro fura-2 loading and platelet washing procedures. However, this [Ca2+]i response was also greater in SPD-HPS platelets when blood was collected with minimal manipulation directly into anticoagulant containing apyrase, raising the possibility that release of dense granule ADP resulting in receptor desensitization may also occur in vivo. Thus, in addition to enhancing platelet activation, dense granule ADP could also act to limit the ADP-mediated reactivity of platelets exposed in vivo to low levels of stimulation.


2007 ◽  
Vol 98 (10) ◽  
pp. 806-812 ◽  
Author(s):  
Vandana Dole ◽  
Wolfgang Bergmeier ◽  
Ian Patten ◽  
Junichi Hirahashi ◽  
Tanya Mayadas ◽  
...  

SummaryWe have previously shown that activated platelets in circulation stimulate release of endothelial Weibel-Palade bodies thus increasing leukocyte rolling in venules. P-selectin on the activated platelets mediates adhesion to leukocytes via PSGL-1 and is rapidly shed into plasma. We were interested in studying the role of PSGL-1 in regulating expression and function of platelet P-selectin. We show here that PSGL-1 is critical for the activation of endothelial cells in venules of mice infused with activated platelets. The interaction of platelet P-selectin with PSGL-1 is also required for P-selectin shedding, as P-selectin was retained significantly longer on the surface of activated platelets infused into PSGL-1-/- compared to wild-type mice. The leukocyte integrin αMβ2 (Mac-1) was not required for P-selectin shedding. In addition to shedding, P-selectin can be downregulated from the platelet surface through internalization and this is the predominant mechanism in the absence of PSGL-1. We demonstrate that leukocyte- neutrophil elastase,known to cleave P-selectin in vitro, is not the major sheddase for P-selectin in vivo. In conclusion, interaction of platelet P-selectin with PSGL-1 is crucial for activation of the endothelium andWeibel-Palade body secretion. The interaction with PSGL-1 also results in rapid shedding of P-selectin thus downregulating the inflammatory potential of the platelet.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Enhui Ma ◽  
Qianqian Wang ◽  
Jinhua Li ◽  
Xinqi Zhang ◽  
Zhenjia Guo ◽  
...  

Abstract Background Prostate cancer (PCa) is a kind of malignancy occurring in the prostate gland. Substantial researches have proved the major role of long noncoding RNAs (lncRNAs) in PCa. However, the role of long intergenic non-protein coding RNA 1006 (LINC01006) in PCa has not been investigated yet. Methods RT-qPCR was used to examine the expression levels of LINC01006 and its downstream targets. The function of LINC01006 in PCa was tested by in vitro and in vivo assays. With application of RNA pull down, RNA immunoprecipitation (RIP) and luciferase reporter assays, the interaction among LINC01006, miR-34a-5p and disheveled associated activator of morphogenesis 1 (DAAM1) were verified. Results LINC01006 expression presented high in PCa cell lines. LINC01006 silencing suppressed cell proliferative, migratory, invasive capacities while accelerated apoptotic rate. Besides, LINC01006 knockdown also suppressed tumor growth and metastasis in vivo. Furthermore, miR-34a-5p, a tumor suppressor in PCa, was sponged by LINC01006. Moreover, DAAM1 was targeted by miR-34a-5p and promoted PCa progression. More intriguingly, rescue assays suggested that the inhibitory effect of LINC01006 knockdown on PCa development was offset by DAAM1 overexpression. Conclusions LINC01006 promoted PCa progression by sponging miR-34a-5p to up-regulate DAAM1, providing a novel target for PCa therapy.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaonan Xu ◽  
Chengle Zhuang ◽  
Zimu Wu ◽  
Hongyan Qiu ◽  
Haixia Feng ◽  
...  

Long intergenic noncoding RNA-p21 (lincRNA-p21) has been reported to be increased in Parkinson’s disease (PD). However, the function and underlying mechanisms of lincRNA-p21 remain not clear. In order to explore the role of lincRNA-p21 in PD, we used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce in vivo PD model (C57BL/6 mice) and utilized N-methyl-4-phenylpyridinium (MPP+) to create in vitro PD model (SH-SY5Y cells). Results showed that the expression level of lincRNA-p21 was increased significantly in PD models. High abundance of lincRNA-p21 inhibited viability and promoted apoptosis markedly in SH-SY5Y cells treated with MPP+. Mechanistically, further experiments demonstrated that upregulation of lincRNA-p21 could sponge miR-1277-5p and indirectly increase the expression of α-synuclein to suppress viability and activate apoptosis in SH-SY5Y cells. In short, our study illustrated that lincRNA-p21/miR-1277-5p axis regulated viability and apoptosis in SH-SY5Y cells treated with MPP+ via targeting α-synuclein. LincRNA-p21 might be a novel target for PD.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Consuelo Ventura-Mejía ◽  
Laura Medina-Ceja

Background. In models of temporal lobe epilepsy and in patients with this pathology, high frequency oscillations called fast ripples (FRs, 250–600 Hz) can be observed. FRs are considered potential biomarkers for epilepsy and, in the light of manyin vitroandin silicostudies, we thought that electrical synapses mediated by gap junctions might possibly modulate FRsin vivo.Methods. Animals with spontaneous recurrent seizures induced by pilocarpine administration were implanted with movable microelectrodes in the right anterior and posterior hippocampus to evaluate the effects of gap junction blockers administered in the entorhinal cortex. The effects of carbenoxolone (50 nmoles) and quinine (35 pmoles) on the mean number of spontaneous FR events (occurrence of FRs), as well as on the mean number of oscillation cycles per FR event and their frequency, were assessed using a specific algorithm to analyze FRs in intracranial EEG recordings.Results. We found that these gap junction blockers decreased the mean number of FRs and the mean number of oscillation cycles per FR event in the hippocampus, both during and at different times after carbenoxolone and quinine administration.Conclusion. These data suggest that FRs may be modulated by gap junctions, although additional experimentsin vivowill be necessary to determine the precise role of gap junctions in this pathological activity associated with epileptogenesis.


1977 ◽  
Vol 55 (4) ◽  
pp. 813-820 ◽  
Author(s):  
Richard L. Hughson ◽  
John R. Sutton ◽  
J. Desmond Fitzgerald ◽  
Norman L. Jones

Physical training is associated with a reduction of intrinsic sinoatrial activity; the present study examined the role of the parasympathetic nervous system in this reduction. Six groups of rats were studied for 10 weeks: inactive control; treadmill exercised; parasympathetic receptor blockade with atropine; exercise plus atropine; parasympathetic receptor stimulation with carbachol; and exercise plus carbachol. In vivo ISF (cardiac frequency 20 min after injection of propranolol and atropine) was measured at 3-week intervals. At the end of 10 weeks the right atrium was excised, in vitro measurements were made of ISF, and chronotropic dose–response curves to acetylcholine and norepinephrine were established. In vivo, ISF was reduced with time, the greatest reduction being found in the exercise plus atropine group; the treadmill-exercised and the atropine-treated groups also had a greater reduction than the control group. In vitro, no differences were observed in acetylcholine responses. The maximum norepinephrine chronotropic response was reduced in the treadmill-exercised and the exercise plus atropine groups. The maximum norepinephrine-induced frequency correlated with the in vitro ISF (r = 0.75). Thus, ISF was reduced with training, but this effect was independent of parasympathetic activity. The properties of the sinoatrial node which set ISF also influenced the maximum norepinephrine response.


2020 ◽  
Vol 11 ◽  
Author(s):  
Bihui Luo ◽  
Zhiyu He ◽  
Shijun Huang ◽  
Jinping Wang ◽  
Dunzheng Han ◽  
...  

Rationale: Cardiac fibrosis is observed in nearly every form of myocardial disease. Long non-coding RNAs (lncRNAs) have been shown to play an important role in cardiac fibrosis, but the detailed molecular mechanism remains unknown.Object: We aimed at characterizing lncRNA 554 expression in murine cardiac fibroblasts (CFs) after myocardial infarction (MI) to identify CF-enriched lncRNA and investigate its function and contribution to cardiac fibrosis and function.Methods and Results: In this study, we identified lncRNA NONMMUT022554 (lncRNA 554) as a regulator of MI-induced cardiac fibrosis. We found that lncRNA 554 was significantly up-regulated in the mouse hearts following MI. Further study showed that lncRNA 554 was predominantly expressed in cardiac fibroblasts, indicating a potential role of lncRNA 554 in cardiac fibrosis. In vitro knockdown of lncRNA 554 by siRNA suppressed fibroblasts migration and expression of extracellular matrix (ECM); while overexpression of lncRNA 554 promoted expression of ECM genes. Consistently, lentivirus mediated in vivo knockdown of lncRNA 554 could inhibit cardiac fibrosis and improve cardiac function in mouse model of MI. More importantly, TGF-β1 inhibitor (TEW-7197) could reverse the pro-fibrotic function of lncRNA 554 in CFs. This suggests that the effects of lncRNA 554 on cardiac fibrosis is TGF-β1 dependent.Conclusion: Collectively, our study illustrated the role of lncRNA 554 in cardiac fibrosis, suggested that lncRNA 554 might be a novel target for cardiac fibrosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Runze Wang ◽  
Yuerong Xu ◽  
Xiaolin Niu ◽  
Yexian Fang ◽  
Dong Guo ◽  
...  

Doxorubicin (DOX) cardiotoxicity is a life-threatening side effect that leads to a poor prognosis in patients receiving chemotherapy. We investigated the role of miR-22 in doxorubicin-induced cardiomyopathy and the underlying mechanism in vivo and in vitro. Specifically, we designed loss-of-function and gain-of-function experiments to identify the role of miR-22 in doxorubicin-induced cardiomyopathy. Our data suggested that inhibiting miR-22 alleviated cardiac fibrosis and cardiac dysfunction induced by doxorubicin. In addition, inhibiting miR-22 mitigated mitochondrial dysfunction through the sirt1/PGC-1α pathway. Knocking out miR-22 enhanced mitochondrial biogenesis, as evidenced by increased PGC-1α, TFAM, and NRF-1 expression in vivo. Furthermore, knocking out miR-22 rescued mitophagy, which was confirmed by increased expression of PINK1 and parkin and by the colocalization of LC3 and mitochondria. These protective effects were abolished by overexpressing miR-22. In conclusion, miR-22 may represent a new target to alleviate cardiac dysfunction in doxorubicin-induced cardiomyopathy and improve prognosis in patients receiving chemotherapy.


Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2346-2353 ◽  
Author(s):  
Lubica Rauova ◽  
Li Zhai ◽  
M. Anna Kowalska ◽  
Gowthami M. Arepally ◽  
Douglas B. Cines ◽  
...  

AbstractHeparin-induced thrombocytopenia (HIT) antibodies recognize complexes between heparin and platelet factor 4 (PF4). Heparin and PF4 bind HIT antibodies only over a narrow molar ratio. We explored the involvement of platelet surface–bound PF4 as an antigen in the pathogenesis of experimental HIT. We show that cell-surface PF4 complexes are also antigenic only over a restricted concentration range of PF4. Heparin is not required for HIT antibody binding but shifts the concentration of PF4 needed for optimal surface antigenicity to higher levels. These data are supported by in vitro studies involving both human and murine platelets with exogenous recombinant human (h) PF4 and either an anti–PF4-heparin monoclonal antibody (KKO) or HIT immunoglobulin. Injection of KKO into transgenic mice expressing different levels of hPF4 demonstrates a correlation between the severity of the thrombocytopenia and platelet hPF4 expression. Therapeutic interventions in this model using high-dose heparin or protamine sulfate support the pathogenic role of surface PF4 antigenic complexes in the etiology of HIT. We believe that this focus on surface PF4 advances our understanding of the pathogenesis of HIT, suggests ways to identify patients at high risk to develop HIT upon heparin exposure, and offers new therapeutic strategies.


2021 ◽  
Author(s):  
Yiming Xu ◽  
Dandan Lv ◽  
Chao Yan ◽  
Hua Su ◽  
Xue Zhang ◽  
...  

Abstract Background: N6-methyladenosine (m 6 A) has emerged as a significant regulator of the progress of various cancers. However, its role in lung adenocarcinoma (LUAD) remains unclear. Here, we explored the biological function and underlying mechanism of methyltransferase-like 3 (METTL3), the main catalyst of m 6 A, in LUAD progression. Methods: The expression of m 6 A, METTL3, YTHDF1 and SLC7A11 were detected by immunochemistry or/and online datasets in LUAD patients. The effects of METTL3 on LUAD cell proliferation, apoptosis and ferroptosis were assessed through in vitro loss-and gain-of-function experiments. The in vivo effect on tumorigenesis of METTL3 was evaluated using the LUAD cell xenograft mouse model. MeRIP-seq, RNA immunoprecipitation and RNA stability assay were conducted to explore the molecular mechanism of METTL3 in LUAD. Results: The results showed that the m 6 A level, as well as the methylase METTL3 were both significantly elevated in LUAD patients and lung cancer cells. Functionally, we found that METTL3 could promote proliferation and inhibit ferroptosis in different LUAD cell models, while METTL3 knockdown suppressed LUAD growth in cell-derived xenografts. Mechanistically, solute carrier 7A11 (SLC7A11), the subunit of system Xc - , was identified as the direct target of METTL3 by mRNA-seq and MeRIP-seq. METTL3-mediated m 6 A modification could stabilize SLC7A11 mRNA and promote its translation, thus promoting LUAD cell proliferation and inhibiting cell ferroptosis, a novel form of programmed cell death. Additionally, we demonstrated that YTHDF1, a m 6 A reader, was recruited by METTL3 to enhance SLC7A11 m 6 A modification. Moreover, the expression of YTHDF1 and SLC7A11 were positively correlated with METTL3 and m 6 A in LUAD tissues.Conclusions: These findings reinforced the oncogenic role of METTL3 in LUAD progression and revealed its underlying correlation with cancer cell ferroptosis; these findings also indicate that METTL3 is a promising novel target in LUAD diagnosis and therapy.


Sign in / Sign up

Export Citation Format

Share Document