SGN-33, Lintuzumab, Demonstrates Anti-Leukemic Activity in Preclinical Models of AML.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 919-919
Author(s):  
May S.K. Sutherland ◽  
Changpu Yu ◽  
Carol Morris-Tilden ◽  
Timothy S. Lewis ◽  
Jamie B. Miyamoto ◽  
...  

Abstract SGN-33 is a humanized IgG1 antibody with signaling properties that also mediates effector functions including Antibody-Dependent Cellular Cytotoxicity (ADCC). SGN-33 targets CD33, a sialoadhesion family member expressed on acute myeloid leukemia (AML) cells, eliciting complete remissions in some AML patients. In the laboratory, SGN-33 mediates natural killer (NK) cell lysis of both multi-drug resistant (MDR- positive) and MDR-negative AML cell lines. Additionally, SGN-33 significantly increases survival in SCID mouse disseminated models of MDR-negative and MDR- positive AML. Immunomodulatory compounds such as thalidomide and its analog, lenalidomide (Revlimid®), have been shown to enhance NK cell function and anti-cancer activity. In particular, Revlimid in combination with rituximab demonstrated greater tumor cell killing compared to the antibody alone. Given these reports, we investigated whether thalidomide or lenalidomide would enhance the anti-tumor effects of SGN-33. In vitro, lenalidomide augmented NK function in a dose-dependent fashion, manifested as significant increases in perforin expression. Thalidomide and lenalidomide enhanced ADCC activity (% maximal specific lysis) while having no significant effects on tumor cell levels of CD33. In vivo, treatment of SCID mice with lenalidomide resulted in a 2-fold increase in the absolute numbers of lymphocytes (including NK cells). In vivo studies evaluating the efficacy of the combination of SGN-33 and lenalidomide in SCID mouse models of AML are in progress. In summary, our studies demonstrate the anti-leukemic activity of SGN-33 against MDR-positive AML cell lines, suggesting that this unconjugated anti-CD33 antibody may yield benefit in clinical settings where other therapies fail due to the MDR phenotype of the tumor cells. Additionally, agents augmenting immunologic effector function might provide clinical benefit in combination with SGN-33. The combination of SGN-33 and lenalidomide is now being evaluated in a clinical trial.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-6
Author(s):  
Ryan Bjordahl ◽  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Chiawei Chang ◽  
...  

Surface expression of the HLA-I related molecules MICA and MICB (MICA/B) in response to oncogenic and cellular stress acts as a natural anti-cancer immunosurveillance mechanism. The recognition of MICA/B by the activating immunoreceptor NKG2D, which is expressed by natural killer (NK) and T cell subsets, is responsible for the removal of many transformed and virally infected cells. However, tumors frequently evade NKG2D-mediated immunosurveillance by proteolytic shedding of MICA/B, which can inhibit NKG2D function and promote tumor immune escape. Recently, we demonstrated that monoclonal antibodies targeting the conserved, membrane-proximal α3 domain of MICA/B can prevent MICA/B shedding and enhance NK cell anti-tumor efficacy. With the goal of leveraging the ubiquity of MICA/B expression on malignant cells, we have developed a novel chimeric antigen receptor targeting the α3 domain of MICA/B (CAR-MICA/B) and are currently evaluating application of CAR-MICA/B in an off-the-shelf NK cell immunotherapy platform for both solid and hematopoietic tumor indications. Optimization of CAR-MICA/B design was performed by primary T cell transduction using a matrix of CAR spacers and ScFv heavy and light chain orientations. Six candidate CAR-MICA/B designs were screened in vitro against a panel of tumor cell lines and in vivo against the Nalm6 leukemia cell line engineered to express MICA (Nalm6-MICA). All tested constructs demonstrated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control (Figure 1A). Additional studies utilizing the optimal CAR-MICA/B configuration demonstrated MICA/B-specific reactivity against a panel of solid and hematopoietic tumor cell lines in vitro, including melanoma, renal cell carcinoma, and lung cancer lines (Figure 1B). Further, CAR-MICA/B T cells were superior to NKG2D-CAR T cells in clearing A2058 melanoma cells in an in vivo xenograft metastasis model (Figure 1C). Although MICA/B expression has primarily been studied in the context of solid tumors, moderate MICA/B mRNA expression was identified in a number of hematopoietic tumor cell lines, including acute myeloid leukemia (AML) and multiple myeloma (MM) lines. Following the confirmation of surface MICA/B protein expression on a selection of MM and AML cell lines, we utilized MICA/B CAR primary T cells to further demonstrate MICA/B-specific activation and cytotoxicity and to confirm CAR-MICA/B targeting of hematological malignancies (Figure 1D). To further advance CAR-MICA/B development, we introduced the CAR-MICA/B construct into an induced pluripotent stem cell (iPSC) line designed for production of off-the-shelf natural killer (NK) cell immunotherapies. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iPSC-derived NK (iNK) cells displayed specific MICA reactivity, resulting in enhanced cytokine production, degranulation, and CAR-mediated cytotoxicity compared to CAR-negative iNK control cells (Figure 1E). In addition to MICA/B-specific cytotoxicity mediated by CAR, iNK cells also mediated innate cytotoxicity against cancer cells through endogenous NKG2D and other NK cell activating receptors, highlighting the multifaceted targeting capacity of CAR iNK cells. In order to isolate CAR-directed cytotoxicity from the iNK cells' innate anti-tumor capacity, an in vivo proof of concept study was performed using mouse B16-F10 melanoma cells engineered to express human MICA. In this model, iNK expressing CAR-MICA/B significantly reduced B16-F10-MICA liver and lung metastases from CAR-MICA/B iNK cells compared to CAR negative control cells, with reductions of the number of metastases by 87% in the lung (p<0.0001) and 93% in the liver (p<0.006) for CAR-MICA/B iNK cells vs non-CAR controls (Figure 1F). Additionally, CAR-MICA/B iNK cells were effective at controlling Nalm6-MICA progression in a disseminated leukemia model, suggesting potential application against both hematopoietic and solid tumors. Ongoing work is focused on extending these studies into disease-specific models of endogenous MICA/B expression to further advance CAR-MICA/B iNK cells in both solid and hematologic cancers. In summary, these preclinical data support the development and translation of an off-the-shelf NK cell immunotherapy targeting the conserved α3 domain of MICA/B with potential therapeutic application to multiple hematopoietic and solid tumor types. Figure 1 Disclosures Bjordahl: Fate Therapeutics: Current Employment. Goulding:Fate Therapeutics: Current Employment. Blum:Fate Therapeutics: Current Employment. Chang:Fate Therapeutics: Current Employment. Wucherpfennig:Fate Therapeutics: Research Funding. Chu:Fate Therapeutics, Inc.: Current Employment, Current equity holder in publicly-traded company; Roche Holding AG: Current equity holder in publicly-traded company. Chu:Fate Therapeutics, Inc: Current Employment. Gaidarova:Fate Therapeutics, Inc: Current Employment. Liu:Fate Therapeutics: Current Employment. Sikaroodi:Fate Therapeutics: Current Employment. Fong:Fate Therapeutics: Current Employment. Huffman:Fate Therapeutics: Current Employment. Lee:Fate Therapeutics, Inc.: Current Employment. Valamehr:Fate Therapeutics, Inc: Current Employment, Current equity holder in publicly-traded company.


1991 ◽  
Vol 117 (3) ◽  
pp. 232-238 ◽  
Author(s):  
J. Timar ◽  
K. Lapis ◽  
T. Fulop ◽  
Z. S. Varga ◽  
J. M. Tixier ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (9) ◽  
pp. 1765-1773 ◽  
Author(s):  
Parvathi Ranganathan ◽  
Xueyan Yu ◽  
Caroline Na ◽  
Ramasamy Santhanam ◽  
Sharon Shacham ◽  
...  

AbstractChromosome maintenance protein 1 (CRM1) is a nuclear export receptor involved in the active transport of tumor suppressors (eg, p53 and nucleophosmin) whose function is altered in cancer because of increased expression and overactive transport. Blocking CRM1-mediated nuclear export of such proteins is a novel therapeutic strategy to restore tumor suppressor function. Orally bioavailable selective inhibitors of nuclear export (SINE) that irreversibly bind to CRM1 and block the function of this protein have been recently developed. Here we investigated the antileukemic activity of KPT-SINE (KPT-185 and KPT-276) in vitro and in vivo in acute myeloid leukemia (AML). KPT-185 displayed potent antiproliferative properties at submicromolar concentrations (IC50 values; 100-500nM), induced apoptosis (average 5-fold increase), cell-cycle arrest, and myeloid differentiation in AML cell lines and patient blasts. A strong down-regulation of the oncogene FLT3 after KPT treatment in both FLT3-ITD and wild-type cell lines was observed. Finally, using the FLT3-ITD–positive MV4-11 xenograft murine model, we show that treatment of mice with oral KPT-276 (analog of KPT-185 for in vivo studies) significantly prolongs survival of leukemic mice (P < .01). In summary, KPT-SINE are highly potent in vitro and in vivo in AML. The preclinical results reported here support clinical trials of KPT-SINE in AML.


2021 ◽  
Vol 22 (14) ◽  
pp. 7337
Author(s):  
Ekaterina Pashkina ◽  
Alina Aktanova ◽  
Irina Mirzaeva ◽  
Ekaterina Kovalenko ◽  
Irina Andrienko ◽  
...  

Cucurbit[7]uril (CB[7]) is a molecular container that may form host–guest complexes with platinum(II) anticancer drugs and modulate their efficacy and safety. In this paper, we report our studies of the effect of CB[7]–oxaliplatin complex and the mixture of CB[7] and carboplatin (1:1) on viability and proliferation of a primary cell culture (peripheral blood mononuclear cells), two tumor cell lines (B16 and K562) and their activity in the animal model of melanoma. At the same time, we studied the impact of platinum (II) drugs with CB[7] on T cells and B cells in vitro. Although the stable CB[7]–carboplatin complex was not formed, the presence of cucurbit[7]uril affected the biological properties of carboplatin. In vivo, CB[7] increased the antitumor effect of carboplatin, but, at the same time, increased its acute toxicity. Compared to free oxaliplatin, its complex with CB[7] shows a greater cytotoxic effect on tumor cell lines B16 and K562, while in vivo, the effects of the free drug and encapsulated drug were comparable. However, in vivo studies also demonstrated that the encapsulation of oxaliplatin in CB[7] lowered the toxicity of the drug.


2020 ◽  
Author(s):  
Yung Yu Wong ◽  
Luke Riggan ◽  
Edgar Perez-Reyes ◽  
Christopher Huerta ◽  
Matt Moldenhauer ◽  
...  

AbstractNatural killer (NK) cells are innate lymphocytes that constantly patrol host tissues against transformed cells in a process known as cancer immunosurveillance. Previous evidence in mice has demonstrated that NK cell-derived IFN-γ can promote immunoevasion by sculpting the immunogenicity of developing tumors in a process known as cancer immunoediting. This process involves the elimination of highly immunogenic “unedited” tumor cells followed by the eventual escape of less immunogenic “edited” tumor cell variants that are able to escape recognition or elimination by the immune system. Here, we show that NK cell-edited fibrosarcomas decrease the expression of 17 conserved IFN-γ-inducible genes compared to unedited tumor cells. High expression of 3 of these identified genes (Psmb8, Trim21, Parp12) in human tumor samples correlates with enhanced survival in breast cancer, melanoma, and sarcoma patients. While NK cell-edited fibrosarcomas displayed resistance to IFN-γ growth suppression in vitro, functional knockouts of individual interferon stimulated genes (ISGs) were not required for outgrowth of unedited tumor cell lines in vitro and in vivo compared to complete loss of IFN signaling. Furthermore, knockout of IFN-γ-intrinsic signaling via deletion of Ifngr in edited B16 F10 and E0771 LMB metastatic cancer cell lines did not impact host survival following lung metastasis. Together, these results suggest that unedited tumors can be selected for decreased IFN-γ signaling to evade immune responses in vivo, and as a consequence, tumor-extrinsic IFN signaling may be more important for potentiating durable anti-tumor responses to advanced solid tumors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Jo Rademacher ◽  
Anahi Cruz ◽  
Mary Faber ◽  
Robyn A. A. Oldham ◽  
Dandan Wang ◽  
...  

AbstractInterleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3487
Author(s):  
Yu-Ling Lu ◽  
Ming-Hsien Wu ◽  
Yi-Yin Lee ◽  
Ting-Chao Chou ◽  
Richard J. Wong ◽  
...  

Differentiated thyroid cancer (DTC) patients are usually known for their excellent prognoses. However, some patients with DTC develop refractory disease and require novel therapies with different therapeutic mechanisms. Targeting Wee1 with adavosertib has emerged as a novel strategy for cancer therapy. We determined the effects of adavosertib in four DTC cell lines. Adavosertib induces cell growth inhibition in a dose-dependent fashion. Cell cycle analyses revealed that cells were accumulated in the G2/M phase and apoptosis was induced by adavosertib in the four DTC tumor cell lines. The sensitivity of adavosertib correlated with baseline Wee1 expression. In vivo studies showed that adavosertib significantly inhibited the xenograft growth of papillary and follicular thyroid cancer tumor models. Adavosertib therapy, combined with dabrafenib and trametinib, had strong synergism in vitro, and revealed robust tumor growth suppression in vivo in a xenograft model of papillary thyroid cancer harboring mutant BRAFV600E, without appreciable toxicity. Furthermore, combination of adavosertib with lenvatinib was more effective than either agent alone in a xenograft model of follicular thyroid cancer. These results show that adavosertib has the potential in treating DTC.


1992 ◽  
Vol 23 (4) ◽  
pp. 891-897 ◽  
Author(s):  
Amato J. Giaccia ◽  
Elizabeth A. Auger ◽  
Albert Koong ◽  
David J. Terris ◽  
Andrew I. Minchinton ◽  
...  

2006 ◽  
Vol 11 (8) ◽  
pp. 922-932 ◽  
Author(s):  
Andrea Ivascu ◽  
Manfred Kubbies

Spheroids are widely used in biology because they provide an in vitro 3-dimensional (3D) model to study proliferation, cell death, differentiation, and metabolism of cells in tumors and the response of tumors to radiotherapy and chemotherapy. The methods of generating spheroids are limited by size heterogeneity, long cultivation time, or mechanical accessibility for higher throughput fashion. The authors present a rapid method to generate single spheroids in suspension culture in individual wells. A defined number of cells ranging from 1000 to 20,000 were seeded into wells of poly-HEMA-coated, 96-well, round-or conical-bottom plates in standard medium and centrifuged for 10 min at 1000 g. This procedure generates single spheroids in each well within a 24-h culture time with homogeneous sizes, morphologies, and stratification of proliferating cells in the rim and dying cells in the core region. Because a large number of tumor cell lines form only loose aggregates when cultured in 3D, the authors also performed a screen for medium additives to achieve a switch from aggregate to spheroid morphology. Small quantities of the basement membrane extract Matrigel, added to the culture medium prior to centrifugation, most effectively induced compact spheroid formation. The compact spheroid morphology is evident as early as 24 h after centrifugation in a true suspension culture. Twenty tumor cell lines of different lineages have been used to successfully generate compact, single spheroids with homogenous size in 96-well plates and are easily accessible for subsequent functional analysis.


2018 ◽  
Vol 48 (6) ◽  
pp. 2286-2301 ◽  
Author(s):  
Dijiong  Wu ◽  
Keding Shao ◽  
Qihao Zhou ◽  
Jie Sun ◽  
Ziqi Wang ◽  
...  

Background/Aims: Although the cure rate of acute promyelocytic leukemia (APL) has exceeded 90%, the relapse/refractory APL that resistant to all-trans retinoic acid (ATRA) or ATO was still serious concern. Matrine (MAT) could improve the differentiation ability of ATRA-resistant APL cells. This study aimed to explore how the APL-specific fusion protein was degraded in ATRA-resistant APL with the application of MAT and ATRA. Methods: ATRA-sensitive (NB4) and ATRA-resistant (NB4-LR1) cell lines were used. Nitroblue tetrazolium reduction assay and flow cytometry were used to detect the differentiation ability. The activity of ubiquitin-proteasome and autophagy-mediated pathways in both cells treated with ATRA with or without MAT were compared in protein and mRNA level (Western blot analysis, qRT-PCR), the Fluorescent substrate Suc-LLVY-AMC detection was used to detect the activity of proteasome, and electron microscope for observing autophagosome. MG 132(proteasome inhibitor), rapamycin (autophagy activator), hydroxychloroquine (lysosomal inhibitor) and STI571 [retinoic acid receptor alpha (RARα) ubiquitin stabilizer] were used as positive controls. The effect of MAT was observed in vivo using xenografts. Results: MAT improved the sensitivity of NB4-LR1cells to ATRA treatment, which was consistent with the expression of PML-RARα fusion protein. MAT promoted the ubiquitylation level in NB4-LR1. MG 132 induced the decrease in RARα in both cell lines, and hampered the differentiation of NB4 cells. MAT also promoted the autophagy in NB4-LR1 cells, with an increase in microtubule-associated protein 1 light chain3 (LC3)-II and LC3-II/LC3-I ratio and exhaustion of P62. The expression of LC3II increased significantly in the MAT and ATRA + MAT groups in combination with lysosomal inhibitors. A similar phenomenon was observed in mouse xenografts. MAT induced apoptosis and differentiation. Conclusions: Autophagy and ubiquitin-mediated proteolytic degradation of PML/RARα fusion protein are crucial in MAT-induced differentiation sensitivity recovery of NB4-LR1 cells.


Sign in / Sign up

Export Citation Format

Share Document