Acute Lung Inflammation in Sickle Mice Is Mediated by Increase of CXC Chemokines and Matrix Metalloproteinases

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2483-2483
Author(s):  
Carla Fernanda Franco-Penteado ◽  
Carolina Lanaro ◽  
Dulcinéia M Albuquerque ◽  
Ana Paula Gimenes ◽  
Luiz Augusto C Passos ◽  
...  

Abstract Studies in vitro, and in vivo using animal models show that leukocytes play a key role in vasoocclusion and clinical research suggests that high leukocyte counts correlate with mortality, stroke and acute chest syndrome in sickle cell disease (SCD). Lungs are particularly vulnerable to vaso-occlusive events because of their anatomic features in SCD. Transgenic mice expressing exclusively human sickle hemoglobin (SS) are well-established models for the study of vascular inflammation. Previous studies have shown that systemic LPS challenge causes exaggerated inflammation, including increased serum and broncoalveolar lavage (BAL) TNF-α and IL-1 cytokines and sVCAM-1 in sickle mice. The aim of this study was to examine the contribution of acute airway inflammation in SCD using SS mice and the role of chemokines and matrix metalloproteinases (MMPs) in this process. Acute lung inflammation and injury were induced by intranasal administration of lipopolysaccharide (LPS, 50 μl of 250 μg/ml) in control (C57BL/6) and SS mice. The vehicle mice group received a similar volume of sterile PBS. BAL was performed 4 h after LPS challenge. qRT-PCR analysis was used to examine gene expression and ELISA protein production. The intranasal administration of LPS to mice triggered a huge influx of leukocytes (neutrophils, NS) in BAL of control and SS mice compared with the respective vehicle groups, but this influx was greater in SS mice, when compared with control mice (1.4 ± 0.06 vs 0.66 ± 0.12 WBCx106/BAL); p=0.0006, 1.06 ± 0.1 vs 0.40 ±0.12 NSx106/BAL; p=0.004, respectively). At baseline levels, KC and MIP-2 chemokines (functional homologues of human IL-8 in mice) are higher in BAL fluid of SS mice compared to control mice (186.6 ± 14.1 pg/ml vs 14.1 ± 5.8 pg/ml; 41.2 ± 7.9 pg/ml vs 11.4 ± 7.3 pg/ml, p=, respectively). Corresponding with influx of NS, lung lavage levels of KC and MIP-2 were significantly higher in SS BALF compared to control mice (2491 ± 454 pg/ml vs 798.1 vs 98.2 pg/ml; 1726 ± 307 pg/ml vs 887.3 ± 149.5 pg/ml, respectively). Enhanced levels of TNF-α were also observed at baseline and after LPS instillation compared to those of the control mice (20.8 ± 8.8 pg/ml vs 2.5 ± 1.6 pg/ml; 4250 ± 636 pg/ml vs 1585 ± 263 pg/ml, respectively). Instillation of LPS markedly increased KC, TNF-α, MMP-8, MMP-9 and TIMP-1 mRNA levels in the lungs of control and SS mice compared to animals that received PBS instead of LPS (Control, KC: 0.19 ± 0.047 vs 0.01 ± 0.005; TNF-α: 0.30 ± 0.07 vs 0.01 ± 0.002; MMP-8: 0.2 ± 0.06 vs 0.016 ± 0.004; MMP-9: 0.22 ± 0.03 vs 0.08 ± 0.01; TIMP-1: 0.32 ± 0.06 vs 0.09 ± 0.03); (SS, KC: 0.42 ± 0.1 vs 0.039 ± 0.02; TNF-α: 0.23 ± 0.025 vs 0.02 ± 0.007; MMP-8: 0.42 ± 0.06 vs 0.06 ± 0.03; MMP-9: 0.49 ± 0.11 vs 0.11 ± 0.05; TIMP-1: 0.49 ± 0.11 vs 0.09 ± 0.03). However, the LPS-induced KC, MMP-8 and MMP-9 expression was significantly higher in SS mice lung compared than that of the control group (p<0.05). Lung MMP-2, MMP-12 and TIMP-2 gene expressions were similar in the PBS and LPS groups and were not significantly different between SS and control mice. Our results indicate that chemokines and MMPs are critically involved in the recruitment of neutrophils to the lung following LPS challenge, and suggest that these inflammatory mediators may play a role in the development of pulmonary diseases in SCD. The findings from this study provide further support to the claim that a proinflammatory state is present in SCD and have important implications for the pathophysiology of lung injury in SCD.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zheng Zheng ◽  
Yan Chen ◽  
Yinzhou Wang ◽  
Yongkun Li ◽  
Qiong Cheng

AbstractCollagen-type I alpha 1 chain (COL1A1) and COL1A2 are abnormally expressed in intracranial aneurysm (IA), but their mechanism of action remains unclear. This study was performed to investigate the mechanism of COL1A1 and COL1A2 affecting the occurrence and rupture of IA. Quantitative real-time polymerase chain reaction was used to measure the expression of hsa-miR-513b-5p, COL1A1, COL1A2, TNF-α, IL-6, MMP2, MMP3, MMP9 and TIMP4 in patients with ruptured IA (RA) (n = 100), patients with un-ruptured IA (UA) (n = 100), and controls (n = 100). Then, human vascular smooth muscle cells (HASMCs) were cultured, and dual luciferase reporter assay was performed to analyse the targeting relationship between miR-513b-5p and COL1A1 or COL1A2. The effects of the miR-513b-5p mimic and inhibitor on the proliferation, apoptosis, and death of HASMC and the RIP1-RIP3-MLKL and matrix metalloproteinase pathways were also explored. The effect of silencing and over-expression of COL1A1 and COL1A2 on the role of miR-513b-5p were also evaluated. Finally, the effects of TNF-α on miR-513b-5p targeting COL1A1 and COL1A2 were tested. Compared with those in the control group, the serum mRNA levels of miR-513b-5p, IL-6 and TIMP4 were significantly decreased in the RA and UA groups, but COL1A1, COL1A2, TNF-α, IL-1β, MMP2, MMP3 and MMP9 were significantly increased (p < 0.05). Compared with those in the UA group, the expression of COL1A1, COL1A2, TNF-α, IL-1β and MMP9 was significantly up-regulated in the RA group (p < 0.05). Results from the luciferase reporter assay showed that COL1A1 and COL1A were the direct targets of miR-513b-5p. Further studies demonstrated that miR-513b-5p targeted COL1A1/2 to regulate the RIP1-RIP3-MLKL and MMP pathways, thereby enhancing cell death and apoptosis. Over-expression of COL1A1 or COL1A2, rather than silencing COL1A1/2, could improve the inhibitory effect of miR-513b-5p on cell activity by regulating the RIP1-RIP3-MLKL and MMP pathways. Furthermore, over-expression of miR-513b-5p and/or silencing COL1A1/2 inhibited the TNF-α-induced cell proliferation and enhanced the TNF-α-induced cell death and apoptosis. The mechanism may be related to the inhibition of collagen I and TIMP4 expression and promotion of the expression of RIP1, p-RIP1, p-RIP3, p-MLKL, MMP2 and MMP9. MiR-513b-5p targeted the inhibition of COL1A1/2 expression and affected HASMC viability and extracellular mechanism remodelling by regulating the RIP1-RIP3-MLKL and MMP pathways. This process might be involved in the formation and rupture of IA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chi-Wei Chang ◽  
Chuang-Hsin Chiu ◽  
Ming-Hsien Lin ◽  
Hung-Ming Wu ◽  
Tsung-Hsun Yu ◽  
...  

Abstract Background Expression of translocator protein (TSPO) on the outer mitochondrial membrane of activated microglia is strongly associated with neuroinflammation. The second-generation PET ligand [18F]FEPPA specifically binds TSPO to enable in vivo visualization and quantification of neuroinflammation. We optimized a fully automated radiosynthesis method and evaluated the utility of [18F]FEPPA, the second-generation PET ligand specifically binds TSPO, in a mouse model of systemic LPS challenge to detect TSPO-associated signals of central and peripheral inflammation. In vivo dynamic PET/MR imaging was performed in LPS-induced and control mice after [18F]FEPPA administration. The relationship between the [18F]FEPPA signal and the dose of LPS was assessed. The cytokine levels (i.e., TNF-α, Il-1β, Il-6) in LPS-induced mice were measured by RT-PCR. Standard uptake value (SUV), total volume of distribution (VT) and area under the curve (AUC) were determined based on the metabolite-uncorrected plasma input function. Western blotting and immunostaining were used to measure TSPO expression in the brain. Results The fully automated [18F]FEPPA radiosynthesis produced an uncorrected radiochemical yield of 30 ± 2% within 80 min, with a radiochemical purity greater than 99% and specific activity of 148.9‒216.8 GBq/µmol. Significant differences were observed in the brain after [18F]FEPPA administration: SUV, VT and AUC were 1.61 ± 0.1, 1.25 ± 0.12 and 1.58 ± 0.09-fold higher in LPS-injected mice than controls. TNF-α, Il-1β and Il-6 mRNA levels were also elevated in the brains of LPS-injected mice. Western blotting revealed TSPO (p < 0.05) and Iba-1 (p < 0.01) were upregulated in the brain after LPS administration. In LPS-injected mice, TSPO immunoactivity colocalized with Iba-1 in the cerebrum and TSPO was significantly overexpressed in the hippocampus and cerebellum. The peripheral organs (heart, lung) of LPS-injected mice had higher [18F]FEPPA signal-to-noise ratios than control mice. Conclusions Based on the current data on ligand specificity and selectivity in central tissues using 7 T PET/MR imaging, we demonstrate that [18F]FEPPA accumulations significant increased in the specific brain regions of systemic LPS-induced neuroinflammation (5 mg/kg). Future investigations are needed to determine the sensitivity of [18F]FEPPA as a biomarker of neuroinflammation as well as the correlation between the PET signal intensity and the expression levels of TSPO.


Author(s):  
Anastasia Drakou ◽  
Despoina Mavrogianni ◽  
Konstantinos Ntzeros ◽  
Athanasios Protopapas ◽  
Petros Drakakis ◽  
...  

Abstract Background Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine which plays an important role in the pathogenesis of many diseases. Endometriosis is one of the most common gynecological diseases. The purpose of this study was to investigate the association of TNF-α-1031T/C polymorphism with the genetic susceptibility of endometriosis in a European population. Materials and methods In this case-control study, 51 endometriosis patients and 67 healthy control women participated. We used endometrial tissue from the patients and peripheral blood from the healthy women to extract DNA. Polymerase chain reaction (PCR) analysis and the restriction enzyme Bbs I were used to analyze the -1031 T/C polymorphism in the TNF-α gene promoter region. Statistical analysis was performed using Fisher’s exact test. We also calculated the odds ratios. Results In the group of patients, 66.7% of women were detected with the TT genotype, 33.3% with the TC genotype and 0% with the CC genotype while in the control group, 46.3% had the TT genotype, 47.8% had the TC genotype and 6% had the CC genotype. There was a significant association between the TT genotype with endometriosis (p = 0.03). There was no significant deviation from the Hardy-Weinberg equilibrium. Conclusions The TC and CC genotypes appeared more often in the healthy women than the endometriosis patients and this shows that the C allele might have a protective role in endometriosis in the Greek population. Further studies are needed to specify the role of this polymorphism in pathogenesis of endometriosis and the mechanisms that protect the patients from the disease.


2020 ◽  
Vol 9 (3) ◽  
pp. 881 ◽  
Author(s):  
Shuzo Sakata ◽  
Ryo Kunimatsu ◽  
Yuji Tsuka ◽  
Ayaka Nakatani ◽  
Tomoka Hiraki ◽  
...  

High-frequency near-infrared diode laser provides a high-peak output, low-heat accumulation, and efficient biostimulation. Although these characteristics are considered suitable for osteoarthritis (OA) treatment, the effect of high-frequency near-infrared diode laser irradiation in in vitro or in vivo OA models has not yet been reported. Therefore, we aimed to assess the biological effects of high-frequency near-infrared diode laser irradiation on IL-1β-induced chondrocyte inflammation in an in vitro OA model. Normal Human Articular Chondrocyte-Knee (NHAC-Kn) cells were stimulated with human recombinant IL-1β and irradiated with a high-frequency near-infrared diode laser (910 nm, 4 or 8 J/cm2). The mRNA and protein expression of relevant inflammation- and cartilage destruction-related proteins was analyzed. Interleukin (IL) -1β treatment significantly increased the mRNA levels of IL-1β, IL-6, tumor necrosis factor (TNF) -α, matrix metalloproteinases (MMP) -1, MMP-3, and MMP-13. High-frequency near-infrared diode laser irradiation significantly reduced the IL-1β-induced expression of IL-1β, IL-6, TNF-α, MMP-1, and MMP-3. Similarly, high-frequency near-infrared diode laser irradiation decreased the IL-1β-induced increase in protein expression and secreted levels of MMP-1 and MMP-3. These results highlight the therapeutic potential of high-frequency near-infrared diode laser irradiation in OA.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jing Guo ◽  
Min Li ◽  
Yi Yang ◽  
Lin Zhang ◽  
Li-wei Zhang ◽  
...  

Abstract Background The complement system plays a critical role as the pathogenic factor in the models of acute lung injury due to various causes. Cobra venom factor (CVF) is a commonly used complement research tool. The CVF can cause acute inflammation in the lung by producing complement activation components. Atorvastatin (ATR) is a 3-hydroxy-3-methylglutaryl coenzyme A inhibitor approved for control of plasma cholesterol levels. This inhibitor can reduce the acute pulmonary inflammatory response. However, the ability of ATR in treating acute lung inflammation caused by complement activation is still unknown. Therefore, we investigated the effect of ATR on lung inflammation in mice induced by activation of the complement alternative pathway in this study. Methods ATR (10 mg/kg/day via oral gavage) was administered for 7 days before tail vein injection of CVF (25 μg/kg). On the seventh day, all mice were sacrificed 1 h after injection. The lung lobe, bronchoalveolar lavage fluid (BALF), and blood samples were collected. The myeloperoxidase (MPO) activity of the lung homogenate, the leukocyte cell count, and the protein content of BALF were measured. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), P-selectin, and Intercellular cell adhesion molecule-1 (ICAM-1) in BALF and serum were determined by enzyme-linked immunosorbent assay. The pathological change of the lung tissue was observed by hematoxylin and eosin staining. The deposition of C5b-9 in the lung tissue was detected by immunohistochemistry. The phosphorylation of NF-κB p65 in the lung tissues was examined by immunohistochemistry and western blotting. Results The lung inflammation levels were determined by measuring the leukocyte cell numbers and protein content of BALF, the lung MPO activity, and expression and staining of the inflammatory mediators (IL-6 and TNF-α), and adhesion molecules (P-selectin and ICAM-1) for lung lesion. A significant reduction in the lung inflammation levels was observed after 7 days in ATR pre-treated mice with a CVF-induced lung disease. Deposition of C5b-9 was significantly alleviated by ATR pretreatment. Early intervention with ATR significantly reduced the development of acute lung inflammation on the basis of phosphorylation of NF-κB p65 in the lung. Conclusion These findings suggest the identification of ATR treatment for the lung inflammation induced by activating the complement system on the basis of its anti-inflammatory response. Together with the model replicating the complement activating characteristics of acute lung injury, the results may be translatable to the overactivated complement relevant diseases.


2004 ◽  
Vol 286 (2) ◽  
pp. L363-L372 ◽  
Author(s):  
Baljit Singh ◽  
Jacqueline W. Pearce ◽  
Lakshman N. Gamage ◽  
Kyathanahalli Janardhan ◽  
Sarah Caldwell

Pulmonary intravascular macrophages (PIMs) are present in ruminants and horses. These species are highly sensitive to acute lung inflammation compared with non-PIM-containing species such as rats and humans. There is evidence that rats and humans may also recruit PIMs under certain conditions. We investigated precise contributions of PIMs to acute lung inflammation in a calf model. First, PIMs were recognized with a combination of in vivo phagocytic tracer Monastral blue and postembedding immunohistology with anti-CD68 monoclonal antibody. Second, gadolinium chloride depleted PIMs within 48 h of treatment ( P < 0.05). Finally, PIMs contain TNF-α, and their depletion reduces cells positive for IL-8 ( P < 0.05) and TNF-α ( P < 0.05) and histopathological signs of acute lung inflammation in calves infected with Mannheimia hemolytica. The majority of IL-8-positive inflammatory cells in lung septa of infected calves were platelets. Platelets from normal cattle contained preformed IL-8 that was released upon in vitro exposure to thrombin ( P < 0.05). These novel data show that PIMs, as the source of TNF-α, promote recruitment of inflammatory cells including IL-8-containing platelets to stimulate acute inflammation and pathology in lungs. These data may also be relevant to humans due to our ability to recruit PIMs.


2007 ◽  
Vol 292 (1) ◽  
pp. L125-L133 ◽  
Author(s):  
J. L. Wright ◽  
H. Tai ◽  
R. Wang ◽  
X. Wang ◽  
A. Churg

Cigarette smoke exposure causes vascular remodeling and pulmonary hypertension by poorly understood mechanisms. To ascertain whether cigarette smoke exposure affects production of matrix metalloproteinases (MMPs) in the pulmonary vessels, we exposed C57Bl/6 (C57) mice or mice lacking TNF-α receptors (TNFRKO) to smoke daily for 2 wk or 6 mo. Using laser capture microdissection and RT-PCR analysis, we examined gene expression of MMP-2, MMP-9, MMP-12, MMP-13, and tissue inhibitor of metalloproteinase (TIMP-1) and examined protein production by immunohistochemistry for MMP-2, MMP-9, and MMP-12 in small intrapulmonary arteries. At 2 wk, mRNA levels of TIMP-1 and all MMPs were increased in the C57, but not TNFRKO, mice, and immunoreactive protein for MMP-2, MMP-9, and MMP-12 was also increased in the C57 mice. Increased gelatinase activity was identified by in situ and bulk tissue zymography. At 6 mo, only MMP-12 mRNA levels remained increased in the C57 mice, but at a much lower level; however, MMP-2 mRNA levels increased in the TNFRKO mice. We conclude that smoke exposure increases MMP production in the small intrapulmonary arteries but that, with the exception of MMP-12, increased MMP production is transient. MMPs probably play a role in smoke-induced vascular remodeling, as they do in other forms of pulmonary hypertension, implying that MMP inhibitors might be beneficial. MMP production is largely TNF-α dependent, further supporting the importance of TNF-α in the pathogenesis of cigarette smoke-induced lung disease.


2021 ◽  
Author(s):  
Chunnuan Zhang ◽  
Yuheng Wang ◽  
Hongtao Ren ◽  
Junhui Wang ◽  
Dongxue Jiang ◽  
...  

Abstract The objective of this study was to determine the effects of quercetin on oxidative stress and apoptosis induced by TPT in zebrafish. 240 fish were divided into 4 groups with three repeats. D1: fish fed with the basal diet as the control group. D2: fish fed with basal diet and exposed in 10 ng/L TPT. D3: fish fed diets containing 100 mg/Kg quercetin and exposed in 10ng/L TPT. D4: fish fed diets containing 100 mg/Kg quercetin. The results showed that quercetin could ameliorate oxidative stress, which decreased MDA, NO levels and improved antioxidant enzyme activities. The key apoptotic gene expressions, including caspase3, Bax and caspase9 mRNA expression were significantly induced by TPT exposure as compared with the control group, while notably decreased the Bcl-2 gene. However, dietary quercetin prevented a significant increase in Bax, caspase3 and caspase9 mRNA levels induced by TPT exposure, but increased Bcl-2 mRNA levels. The results of our study also demonstrated that 10 ng/L TPT significantly up-regulated TNF-α, IL-1β, IL-8, and NF-kB p65 gene expression and down-regulated IL-10 and IkB expression compared to the control group. However, TPT-induced inflammation was significantly mitigated in the quercetin treatment group. In conclusion, our findings suggested that quercetin might alleviate hepatic oxidative damage and apoptosis induced by TPT.


2020 ◽  
Author(s):  
Tiande Zou ◽  
Jin Yang ◽  
Xiaobo Guo ◽  
Qin He ◽  
Zirui Wang ◽  
...  

Abstract Background: Seaweed-derived polysaccharides (SDP) represent an attractive source of prebiotic nutraceuticals for the food and animal husbandry industry. However, the mechanism by which SDP from Enteromorpha mediates pig growth are not fully understood. This study aimed to investigate how SDP supplementation influences the growth performance and intestinal health in weaned pigs.Results: In Exp. 1, 240 weaned pigs were randomly assigned to four dietary treatments and fed with a basal diet or a basal diet containing 200, 400 or 800 mg/kg SDP, respectively, in a 21-d trial. Pigs on the 400 or 800 mg/kg SDP-supplemented group had greater ADG and lower F/G ratio than those on the control group (P<0.05). In Exp. 2, 20 male weaned pigs were randomly assigned to two treatments and fed with a basal diet (CON group) or a basal diet supplemented with 400 mg/kg SDP (the optimum does from Exp. 1), in a 21-d trial. Pigs fed the SDP diet had greater ADG, the concentrations of serum IL-6 and TNF-α and the activities of glutathione peroxidase, superoxide dismutase and catalase (P<0.05), and lower F/G, diarrhea rate, as well as serum D-lactate concentrations and diamine oxidase activity (P<0.05). Moreover, dietary SDP supplementation enhanced secretory immunoglobulin A content, villus height and villous height: crypt depth ratio in small intestine, as well as the lactase and maltase activities in jejunum mucosa (P<0.05). SDP supplementation elevated the mRNA levels of inflammatory response-related genes (IL-6, TNF-α, TLR4, TLR6 and MyD88), and the mRNA and protein levels of ZO-1, Claudin-1 and Occludin in jejunum mucosa (P<0.05). Importantly, SDP not only increased the Lactobacillus population but also reduced the Escherichia coli population in cecum (P<0.05). Furthermore, SDP increased acetic acid and butyric acid concentrations in cecum (P<0.05).Conclusions: These results not only suggest a beneficial effect of SDP on growth performance and intestinal barrier functions, but also offer potential mechanisms behind SDP-facilitated intestinal health in weaned pigs.


2021 ◽  
Author(s):  
Xiang Yan ◽  
Meng Fu ◽  
Ye Gao ◽  
Qin Han ◽  
Shuang Li ◽  
...  

Abstract Background Delayed neuropsychologic sequelae is common in patients after carbon monoxide poisoning without effective methods worldwide. Fasudil exerts neuroprotective effect and alleviates oxidative stress in some neurodegenerative disorders. However, the mechanism between DNS and FS remains unclear. The study aims to explore the efficacy and mechanism of Fasudil in DNS mice model. Objective The delayed neuropsychologic sequelae model was induced with a hyperbaric oxygen chamber. All rats were randomly assigned to three groups (n=10): air control group (AC), CO poisoning group (CO), and CO poisoning +Fasudil group (CO+FS). Rats in the CO+FS group were given Fasudil (10 mg/kg/day, ip). The morris water maze was documented to estimate spatial learning and memory of mice. The demyelination state in brain was observed through LFB staining. The protein of MBP was examined with immunofluorescence staining. The levels of IL-6, TNF-α, TGF-β, SOD, and MDA were examined by ELISA. The mRNA levels of Rho, ROCK2, MLC1 and MYPT1 were analyzed by rt-PCR. Result The cognitive impairment in the CO+FS group were significantly reduced than those of the CO group (P<0.05). LFB staining and immunofluorescence staining of MBP results showed that FS significantly treatment attenuated demyelination (P<0.05). Compared with the CO group, the levels of TNF-α, IL-6, MDA, ROCK2, MLC1, and MYPT1 significantly decreased (P<0.05), and the levels of SOD were significantly increased in the CO+FS group (P<0.05). Conclusion In a word, Fasudil attenuated delayed neuropsychologic sequelae by inhibiting inflammation, oxidative stress and downregulating Rho/ROCK pathway in DNS mice model. We conclude that Fasudil may be a novel treatment for delayed neuropsychologic sequelae.


Sign in / Sign up

Export Citation Format

Share Document