Proteomic Analysis of the alphaIIbbeta3 Interactome Reveals Novel Chaperone and Trafficking Proteins, Including An HSP40 Chaperone, DNAJC10, That Regulates alphaIIbbeta3 Surface Expression

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2863-2863
Author(s):  
Amanda Chen ◽  
Mahmoud Yazdani-Abyaneh ◽  
W. Beau Mitchell

Abstract Platelet alpha granules, which contain both membrane-bound and secreted proteins, are formed in the megakaryocyte and then delivered along proplatelet elaborations to the newly forming platelets. A critical but poorly understood process is the post-translational processing, sorting and delivery of proteins to alpha granules prior to their delivery to the proplatelet. Defects in the processing and trafficking of platelet proteins can result in reduced platelet formation. In addition, platelet alpha granules may be differentially packaged with pro- or anti-angiogenic proteins, suggesting that protein sorting events that occur before alpha granule formation may significantly impact platelet end-point function. Thus, research at the intersection of protein trafficking and thrombopoiesis may lead to clearer understanding of the mechanisms of proplatelet formation, the mechanisms of disease in inherited platelet disorders, and the mechanisms of platelet function in inflammation, tumor metastasis and angiogenesis. We have used the platelet integrin aIIbb3 as a model protein to investigate the mechanisms of these processes. In this study we identified proteins that interacted with aIIb in either HEK293 cells or stem cell derived megakaryocytes. The purpose of expanding the “interactome” of aIIb is to identify novel protein-protein interactions that are important for protein delivery to the megakaryocyte surface, and thus could be important for alpha granule and proplatelet formation. We used two methods of capturing interacting proteins: 1) a two-cell pull-down assay using Histidine-tagged aIIb and b3 as bait for umbilical cord blood derived megakaryocyte lysate, followed by nickel bead extraction, 2) a crosslinking assay in which photoreactive, crosslinking amino acids are incorporated into growing megakaryocytes, then crosslinked by exposure to UV light. To enrich the population of aIIb residing in the ER and Golgi, a mutant aIIb subunit containing a R858G mutation, which prevents cleavage of pro-aIIb to mature aIIb resulting in intracellular retention, was used as bait in some assays. The captured proteins from both methods were separated by SDS-PAGE and analyzed by mass spectroscopy. Two or more unique peptides were identified for 93 proteins, and 33 proteins were identified in two or more separate experiments. Of these proteins, 45 were potential protein-trafficking proteins, known to interact with aIIb, or of unknown function. Further analysis of one of these proteins, DNAJC10, suggested that it plays a role in aIIbb3 biogenesis and trafficking. DNAJC10 is an HSP40 type protein with a BiP binding domain and a second domain containing two disulfide isomerase motifs. It has been shown to be induced during ER stress, and may assist in delivering misfolded ER proteins to the proteasome for degradation. Immunoprecipitation of aIIb and b3 followed by immunoblot with anti-DNAJC10 mAb revealed protein bands corresponding to the molecular mass of DNAJC10, indicating direct or indirect physical interaction of aIIb and b3 with DNAJC10. siRNA mediated knockdown of DNAJC10 increased aIIbb3 surface expression on human megakaryocytes by 12%. Together these findings indicate that DNAJC10 interacts with aIIbb3 and may play a role in regulating aIIbb3 surface expression. This study offers new insights into the control of aIIbb3 surface expression and further studies may reveal new targets for anti- or pro-integrin therapies.

Author(s):  
Syed Nabeel-Shah ◽  
Hyunmin Lee ◽  
Nujhat Ahmed ◽  
Edyta Marcon ◽  
Shaghayegh Farhangmehr ◽  
...  

AbstractThe COVID-19 pandemic has caused over one million deaths thus far. There is an urgent need for the development of specific viral therapeutics and a vaccine. SARS-CoV-2 nucleocapsid (N) protein is highly expressed upon infection and is essential for viral replication, making it a promising target for both antiviral drug and vaccine development. Here, starting from a functional proteomics workflow, we initially catalogued the protein-protein interactions of 21 SARS-CoV-2 proteins in HEK293 cells, finding that the stress granule resident proteins G3BP1 and G3BP2 copurify with N with high specificity. We demonstrate that N protein expression in human cells sequesters G3BP1 and G3BP2 through its physical interaction with these proteins, attenuating stress granule (SG) formation. The ectopic expression of G3BP1 in N-expressing cells was sufficient to reverse this phenotype. Since N is an RNA-binding protein, we performed iCLIP-sequencing experiments in cells, with or without exposure to oxidative stress, to identify the host RNAs targeted by N. Our results indicate that SARS-CoV-2 N protein binds directly to thousands of mRNAs under both conditions. Like the G3BPs stress granule proteins, N was found to predominantly bind its target mRNAs in their 3’UTRs. RNA sequencing experiments indicated that expression of N results in wide-spread gene expression changes in both unstressed and oxidatively stressed cells. We suggest that N regulates host gene expression by both attenuating stress granules and binding directly to target mRNAs.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 283
Author(s):  
Michael D. Barrera ◽  
Victoria Callahan ◽  
Ivan Akhrymuk ◽  
Nishank Bhalla ◽  
Weidong Zhou ◽  
...  

Alphaviruses are a genus of the Togaviridae family and are widely distributed across the globe. Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV), cause encephalitis and neurological sequelae while chikungunya virus (CHIKV) and Sindbis virus (SINV) cause arthralgia. There are currently no approved therapeutics or vaccines available for alphaviruses. In order to identify novel therapeutics, a V5 epitope tag was inserted into the N-terminus of the VEEV E2 glycoprotein and used to identify host-viral protein interactions. Host proteins involved in protein folding, metabolism/ATP production, translation, cytoskeleton, complement, vesicle transport and ubiquitination were identified as VEEV E2 interactors. Multiple inhibitors targeting these host proteins were tested to determine their effect on VEEV replication. The compound HA15, a GRP78 inhibitor, was found to be an effective inhibitor of VEEV, EEEV, CHIKV, and SINV. VEEV E2 interaction with GRP78 was confirmed through coimmunoprecipitation and colocalization experiments. Mechanism of action studies found that HA15 does not affect viral RNA replication but instead affects late stages of the viral life cycle, which is consistent with GRP78 promoting viral assembly or viral protein trafficking.


2001 ◽  
Vol 114 (11) ◽  
pp. 2115-2123
Author(s):  
Hans C. van Leeuwen ◽  
Peter O’Hare

p32/gC1qR is a small acidic protein that has been reported to have a broad range of distinct functions and to associate with a wide array of cellular, viral and bacterial proteins. It has been found in each of the main cellular compartments including mitochondria, nucleus and cytoplasm and is also thought to be located at the plasma membrane and secreted into the extracellular matrix. The true physiological role(s) of p32 remains controversial because it has been difficult to reconcile all of the findings on protein interactions and the seemingly disparate observations on compartmentalisation. However, it has been proposed that p32 is somehow involved in transport processes connecting diverse cellular compartments and the cell surface. Here we show that native p32 appears to be localised mainly in the mitochondria and is not detectable on the cell surface. However, addition of a short tag to the N-terminus of p32 appears to block its mitochondrial targeting, resulting in redirection into a cytoplasmic vesicular pattern, overlapping with the endoplasmic reticulum. The redirection of p32 results in an alteration in and co-localisation with ER markers including calreticulin, a lumenal ER chaperone. Furthermore, we show both by immunofluorescence and cross-linking studies that this also results in cell-surface expression of p32. These results indicate that, at least under certain circumstances, p32 can be retargeted and may help to provide an explanation for the diverse observations on its localization.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 650 ◽  
Author(s):  
Rachel M. Carnes ◽  
Robert A. Kesterson ◽  
Bruce R. Korf ◽  
James A. Mobley ◽  
Deeann Wallis

Neurofibromatosis Type 1 (NF1) is caused by pathogenic variants in the NF1 gene encoding neurofibromin. Definition of NF1 protein–protein interactions (PPIs) has been difficult and lacks replication, making it challenging to define binding partners that modulate its function. We created a novel tandem affinity purification (TAP) tag cloned in frame to the 3’ end of the full-length murine Nf1 cDNA (mNf1). We show that this cDNA is functional and expresses neurofibromin, His-Tag, and can correct p-ERK/ERK ratios in NF1 null HEK293 cells. We used this affinity tag to purify binding partners with Strep-Tactin®XT beads and subsequently, identified them via mass spectrometry (MS). We found the tagged mNf1 can affinity purify human neurofibromin and vice versa, indicating that neurofibromin oligomerizes. We identify 21 additional proteins with high confidence of interaction with neurofibromin. After Metacore network analysis of these 21 proteins, eight appear within the same network, primarily keratins regulated by estrogen receptors. Previously, we have shown that neurofibromin levels negatively regulate keratin expression. Here, we show through pharmacological inhibition that this is independent of Ras signaling, as the inhibitors, selumetinib and rapamycin, do not alter keratin expression. Further characterization of neurofibromin oligomerization and binding partners could aid in discovering new neurofibromin functions outside of Ras regulation, leading to novel drug targets.


2018 ◽  
Vol 25 (11) ◽  
pp. 1905-1920 ◽  
Author(s):  
Mo Chen ◽  
Tao Qiu ◽  
Jiajie Wu ◽  
Yang Yang ◽  
Graham D. Wright ◽  
...  

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Yan Wang ◽  
Wai Ho Tang ◽  
Xinbo Zhang ◽  
Jing Du ◽  
John Hwa ◽  
...  

Background: Hyperglycemia triggered endoplasmic reticulum (ER) stress is one of the major causes for platelet hyperactivation and apoptosis in diabetes mellitus (DM). Reticulon-4B (aka Nogo-B) mainly localizes to the ER, and has been shown to influence the ER morphology, ER-Golgi trafficking, apoptotic balance, vesicle formation and protein trafficking in cells. The present study is aimed to investigate the role of Nogo-B on platelet function in DM. Methods and Results: Nogo-B is highly expressed in platelets from healthy individual. Platelets from DM patients and diabetic mice have decreased Nogo-B level. Using Streptozotocin (STZ) induced diabetic mouse model, we show that loss of Nogo (Nogo-/- mice) decreased platelet number, increased mean platelet volume and prolonged bleeding time compared to wild-type (WT) mice. Platelets from Nogo-/- mice were hyperactive with higher JONA and P-selectin surface expression compared to WT mice. Loss of Nogo increased thrombin and collagen induced platelet aggregation. Furthermore, platelets from diabetic Nogo-/- mice show elevated reactive oxygen species (ROS) production, decreased mitochondria membrane potential and increased apoptosis, which can be rescued by antioxidant N-acetyl-L-cysteine. Mechanistically, we show Nogo-B prevented sequestration of antiapoptotic proteins Bcl-xL and Bcl-2 induced by hyperglycemia, subsequently protected against platelet mitochondrial damage, ROS production, caspase-3 activation and apoptosis. Conclusion: These findings demonstrate that Nogo-B protects against ER stress induced platelet apoptosis and hyperactivation in DM by regulating Bcl-xL and Bcl-2 sequestration and mitochondrial damage. This novel pathway may provide therapeutic targets for thrombotic complications in diabetes mellitus.


2020 ◽  
Vol 13 ◽  
Author(s):  
Parnayan Syed ◽  
Nela Durisic ◽  
Robert J. Harvey ◽  
Pankaj Sah ◽  
Joseph W. Lynch

Missense mutations T166M, Q242L, T336M, and Y474C in the GABAA receptor (GABAAR) α3 subunit gene are associated with epileptic seizures, dysmorphic features, intellectual disability, and developmental delay. When incorporated into GABAARs expressed in oocytes, all mutations are known to reduce GABA-evoked whole-cell currents. However, their impact on the properties of inhibitory synaptic currents (IPSCs) is unknown, largely because it is difficult to establish, much less control, the stoichiometry of GABAAR expressed in native neuronal synapses. To circumvent this problem, we employed a HEK293 cell-neuron co-culture expression system that permits the recording of IPSCs mediated by a pure population of GABAARs with a defined stoichiometry. We first demonstrated that IPSCs mediated by α3-containing GABAARs (α3β3γ2) decay significantly slower than those mediated by α1-containing isoforms (α1β2γ2 or α1β3γ2). GABAAR α3 mutations did not affect IPSC peak amplitudes or 10–90% rise times, but three of the mutations affected IPSC decay. T336M significantly accelerated the IPSC decay rate whereas T166M and Y474C had the opposite effect. The acceleration of IPSC decay kinetics caused by the T366M mutation was returned to wild-type-like values by the anti-epileptic medication, midazolam. Quantification experiments in HEK293 cells revealed a significant reduction in cell-surface expression for all mutants, in agreement with previous oocyte data. Taken together, our results show that impaired surface expression and altered IPSC decay rates could both be significant factors underlying the pathologies associated with these mutations.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 607 ◽  
Author(s):  
Verena Janes ◽  
Simona Grabany ◽  
Julien Delbrouck ◽  
Stephane P. Vincent ◽  
Johannes Gottschalk ◽  
...  

Genetic defects of human galactose-1-phosphate uridyltransferase (hGALT) and the partial loss of enzyme function result in an altered galactose metabolism with serious long-term developmental impairment of organs in classic galactosemia patients. In search for cellular pathomechanisms induced by the stressor galactose, we looked for ways to induce metabolically a galactosemia-like phenotype by hGALT inhibition in HEK293 cells. In kinetic studies, we provide evidence for 2-fluorinated galactose-1-phosphate (F-Gal-1-P) to competitively inhibit recombinant hGALT with a KI of 0.9 mM. Contrasting with hepatic cells, no alterations of N-glycoprofiles in MIG (metabolic induction of galactosemia)-HEK293 cells were revealed for an inducible secretory netrin-1 probe by MALDI-MS. Differential fluorescence-activated cell sorting demonstrated reduced surface expression of N-glycosylated CD109, EGFR, DPP4, and rhMUC1. Membrane raft proteomes exhibited dramatic alterations pointing to an affection of the unfolded protein response, and of targeted protein traffick. Most prominent, a negative regulation of oxidative stress was revealed presumably as a response to a NADPH pool depletion during reduction of Gal/F-Gal. Cellular perturbations induced by fluorinated galactoses in normal epithelial cells resemble proteomic changes revealed for galactosemic fibroblasts. In conclusion, the metabolic induction of galactosemia-like phenotypes in healthy epithelial/neuronal cells could support studies on the molecular pathomechanisms in classic galactosemia, in particular under conditions of low galactose stress and residual GALT activity.


2003 ◽  
Vol 162 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Tim-Wolf Gilberger ◽  
Jennifer K. Thompson ◽  
Michael B. Reed ◽  
Robert T. Good ◽  
Alan F. Cowman

The invasion of host cells by the malaria parasite Plasmodium falciparum requires specific protein–protein interactions between parasite and host receptors and an intracellular translocation machinery to power the process. The transmembrane erythrocyte binding protein-175 (EBA-175) and thrombospondin-related anonymous protein (TRAP) play central roles in this process. EBA-175 binds to glycophorin A on human erythrocytes during the invasion process, linking the parasite to the surface of the host cell. In this report, we show that the cytoplasmic domain of EBA-175 encodes crucial information for its role in merozoite invasion, and that trafficking of this protein is independent of this domain. Further, we show that the cytoplasmic domain of TRAP, a protein that is not expressed in merozoites but is essential for invasion of liver cells by the sporozoite stage, can substitute for the cytoplasmic domain of EBA-175. These results show that the parasite uses the same components of its cellular machinery for invasion regardless of the host cell type and invasive form.


2016 ◽  
Vol 76 (3) ◽  
pp. 593-601 ◽  
Author(s):  
Liye Chen ◽  
Hui Shi ◽  
Jack Yuan ◽  
Paul Bowness

ObjectiveAssociation of position 97 (P97) residue polymorphisms in human leucocyte antigen (HLA)-B, including HLA-B*27, with ankylosing spondylitis (AS) has recently been reported. We studied the effect of P97 variations on cell surface expression of the AS-associated HLA-B*27 and HLA-B*51, and the AS-protective HLA-B*7.MethodsFlow cytometry was used to measure surface expression of HLA-B*27 in C1R/HeLa cells expressing HLA-B*27 (N97) and six mutants at P97 (N97T, N97S, N97V, N97R, N97W and N97D). Transporter associated with antigen processing-deficient T2, tapasin-deficient 220, β2m-deficient HCT15 and endoplasmic reticulum aminopeptidase 1 or β2m-clustered regularly interspaced short palindromic repeats/Cas9-knockout HeLa cells were used to provide evidence for specific protein interactions. Surface expression of HLA-B*7/HLA-B*51 P97 mutants was also studied.ResultsMutation of HLA-B*27 P97 to the AS risk residue threonine increased cell surface free heavy chain (FHC) expression. Protective residues (serine or valine) and non-AS-associated residues (arginine or tryptophan) did not alter FHC expression. The N97D mutation reduced expression of conventional and FHC forms of HLA-B*27. Differences in FHC expression levels between HLA-B*27, HLA-B*27-N97T and HLA-B*27-N97D were dependent on the presence of functional β2m. HLA-B*7, which has an AS-protective serine at P97, expressed lower levels of FHC than HLA-B*27 or HLA-B*51. Introduction of asparagine at P97 of both HLA-B*7 and HLA-B*51 increased FHC expression.ConclusionsThe nature of P97 residue affects surface expression of HLA-B*27, B*7 and B*51, with AS-associated residues giving rise to higher FHC expression levels. The association of P97 amino acid polymorphisms with AS could be, at least in part, explained by its effect on HLA-B*27 FHC cell surface expression.


Sign in / Sign up

Export Citation Format

Share Document