PAK1 Regulates Eotaxin-Mediated Murine Eosinophil Migration in Vitro and In Vivo

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 18-18
Author(s):  
Muithi Mwanthi ◽  
Gracie Michels ◽  
Karl Staser ◽  
Sarita Sehra ◽  
Michal Jander ◽  
...  

Abstract Abstract 18 Eosinophils are increasingly recognized as important myeloid effector cells in the inflammatory environment of many human diseases. Although eosinophils critically contribute to chronic asthmatic inflammation, few therapies directly target these cells. Eosinophils rapidly migrate to eotaxin elicited by allergic sensitization and challenge, a chemokine that ligates the CCR3 receptor. Eotaxin:CCR3 signaling critically regulates allergen-induced eosinophil infiltration in murine models by activating the Rho-family proteins. In several cell systems, the Rho proteins Rac and CDC42 activate p21-activated kinase 1 (PAK1), which we have previously shown to regulate F-actin dynamics and histamine release in the degranulating mast cell. In these studies, we examined eotaxin-induced eosinophil migration using genetic and hematopoietic ablation of Pak1 (Pak1−/−) in a murine asthma model. Using an in vitro transwell migration assay system, we evaluated the migration of bone marrow derived eosinophils of both genotypes to eotaxin (N=10). Pak1−/− eosinophils exhibited profoundly diminished eotaxin-induced chemotaxis in vitro relative to wild-type (Pak1+/+) eosinophils (p < 0.0001) with a 30% overall decrease in migrating Pak1−/− compared to Pak1+/+ eosinophils. Furthermore, we compared the eotaxin-induced localization and arrangement of F-actin in eosinophils of both genotypes by fluorescence cytometry and deconvolution confocal microscopy of fluorescently-tagged phalloidin in seeking to explain this migration defect. Preliminary findings suggest decreased F-actin polymerization in eotaxin-treated Pak1−/− eosinophils. In an independent line of experiments designed to compare eotaxin-mediated eosinophil recruitment in vivo we injected mice of both genotypes with an intraperitoneal dose of eotaxin or saline. Pak1+/+ mice showed an 8 fold eotaxin-mediated increase in eosinophil recruitment over control whereas Pak1−/− mice demonstrated only a modest 3–4 fold increase (p< 0.05). Finally we pursued PAK1's function in an experimental disease model in which the eosinophil's key role in pathogenesis is well documented. In 3 cohorts of 7 age, gender and strain matched Pak1+/+ and Pak1−/− ova albumin (OVA)-sensitized and challenged mice, we scored lung eosinophilic inflammation by histology and compared eosinophil counts and eotaxin concentrations in broncho-alveolar lavage fluid (BALF) by fluorescence cytometry and ELISA respectively. We also assessed OVA-specific T-cell subset cytokine secretion in our asthma mice by ELISA. Lung-parenchymal eosinophilic inflammation was diminished in Pak1−/− ova-sensitized mice versus Pak1+/+'s (p<0.01) with neither differences in BALF eotaxin content nor OVA-specific in vitro T-helper cell secretion of asthma-induced cytokines between the 2 genotypes. Based on our findings in this model, we assessed PAK1's hematopoietic role using two complementary chimeric mouse models. In a cohort of matched recipient Pak1+/+ mice we transplanted Pak1+/+ and Pak1−/− bone marrow and after hematopoietic reconstitution we incited asthmatic inflammation in these mice. Significantly, hosts transplanted with Pak1−/− bone marrow developed decreased eosinophilic inflammation scores compared to Pak1+/+ bone marrow recipients (p<0.05). To complement the bone marrow experiments, we transplanted left-lung grafts from Pak1+/+ and Pak1−/− mice into matched Pak1+/+ and Pak1−/− recipient mice and after surgical recuperation we elicited asthmatic inflammation as above. Similar to our bone marrow transplant experiments, irrespective of the genotype of the lung graft, hosts with Pak1−/− bone marrow developed decreased lung eosinophil infiltrate. Our data suggest that genetic PAK1 disruption hinders the in vitro and in vivo eotaxin-mediated migration of eosinophils by altering polymerization of F-actin. In an OVA murine model of asthma, we show that the genetic ablation of PAK1 attenuates the eosinophilic inflammation without affecting T-cell function. We similarly demonstrate that hematopoietic expression of PAK1 is critical to the development of eosinophil inflammation in two complementary transplant murine models. Pharmacologically targeting PAK1 may thus provide a specific way to impede eosinophil tissue infiltration, alleviate chronic eosinophil inflammation, and hamper long-term tissue remodeling in diseases like asthma. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-21
Author(s):  
Gisele Olinto Libanio Rodrigues ◽  
Julie Hixon ◽  
Hila Winer ◽  
Erica Matich ◽  
Caroline Andrews ◽  
...  

Mutations of the IL-7Rα chain occur in approximately 10% of pediatric T-cell acute lymphoblastic leukemia cases. While we have shown that mutant IL7Ra is sufficient to transform an immortalized thymocyte cell line, mutation of IL7Ra alone was insufficient to cause transformation of primary T cells, suggesting that additional genetic lesions may be present contributing to initiate leukemia. Studies addressing the combinations of mutant IL7Ra plus TLX3 overexpression indicates in vitro growth advantage, suggesting this gene as potential collaborative candidate. Furthermore, patients with mutated IL7R were more likely to have TLX3 or HOXA subgroup leukemia. We sought to determine whether combination of mutant hIL7Ra plus TLX3 overexpression is sufficient to generate T-cell leukemia in vivo. Double negative thymocytes were isolated from C57BL/6J mice and transduced with retroviral vectors containing mutant hIL7R plus hTLX3, or the genes alone. The combination mutant hIL7R wild type and hTLX3 was also tested. Transduced thymocytes were cultured on the OP9-DL4 bone marrow stromal cell line for 5-13 days and accessed for expression of transduced constructs and then injected into sublethally irradiated Rag-/- mice. Mice were euthanized at onset of clinical signs, and cells were immunophenotyped by flow cytometry. Thymocytes transduced with muthIL-7R-hTLX3 transformed to cytokine-independent growth and expanded over 30 days in the absence of all cytokines. Mice injected with muthIL7R-hTLX3 cells, but not the controls (wthIL7R-hTLX3or mutIL7R alone) developed leukemia approximately 3 weeks post injection, characterized by GFP expressing T-cells in blood, spleen, liver, lymph nodes and bone marrow. Furthermore, leukemic mice had increased white blood cell counts and presented with splenomegaly. Phenotypic analysis revealed a higher CD4-CD8- T cell population in the blood, bone marrow, liver and spleen compared in the mutant hIL7R + hTLX3 mice compared with mice injected with mutant IL7R alone indicating that the resulting leukemia from the combination mutant hIL7R plus hTLX3 shows early arrest in T-cell development. Taken together, these data show that oncogenic IL7R activation is sufficient for cooperation with hTLX3 in ex vivo thymocyte cell transformation, and that cells expressing the combination muthIL7R-hTLX3 is sufficient to trigger T-cell leukemia in vivo. Figure Disclosures No relevant conflicts of interest to declare.


Leukemia ◽  
2016 ◽  
Vol 31 (8) ◽  
pp. 1743-1751 ◽  
Author(s):  
S Hipp ◽  
Y-T Tai ◽  
D Blanset ◽  
P Deegen ◽  
J Wahl ◽  
...  

Abstract B-cell maturation antigen (BCMA) is a highly plasma cell-selective protein that is expressed on malignant plasma cells of multiple myeloma (MM) patients and therefore is an ideal target for T-cell redirecting therapies. We developed a bispecific T-cell engager (BiTE) targeting BCMA and CD3ɛ (BI 836909) and studied its therapeutic impacts on MM. BI 836909 induced selective lysis of BCMA-positive MM cells, activation of T cells, release of cytokines and T-cell proliferation; whereas BCMA-negative cells were not affected. Activity of BI 836909 was not influenced by the presence of bone marrow stromal cells, soluble BCMA or a proliferation-inducing ligand (APRIL). In ex vivo assays, BI 836909 induced potent autologous MM cell lysis in both, newly diagnosed and relapsed/refractory patient samples. In mouse xenograft studies, BI 836909 induced tumor cell depletion in a subcutaneous NCI-H929 xenograft model and prolonged survival in an orthotopic L-363 xenograft model. In a cynomolgus monkey study, administration of BI 836909 led to depletion of BCMA-positive plasma cells in the bone marrow. Taken together, these results show that BI 836909 is a highly potent and efficacious approach to selectively deplete BCMA-positive MM cells and represents a novel immunotherapeutic for the treatment of MM.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1543-1552 ◽  
Author(s):  
VF Quesniaux ◽  
S Wehrli ◽  
C Steiner ◽  
J Joergensen ◽  
HJ Schuurman ◽  
...  

Abstract The immunosuppressive drug rapamycin suppresses T-cell activation by impairing the T-cell response to lymphokines such as interleukin-2 (IL- 2) and interleukin-4 (IL-4). In addition, rapamycin blocks the proliferative response of cell lines to a variety of hematopoietic growth factors, including interleukin-3 (IL-3), interleukin-6 (IL-6), granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage- colony stimulating factor (GM-CSF), and kit ligand (KL), suggesting that it should be a strong inhibitor of hematopoiesis. In this report, we studied the effects of rapamycin on different hematopoietic cell populations in vitro and in vivo. In vitro, rapamycin inhibited the proliferation of primary bone marrow cells induced by IL-3, GM-CSF, KL, or a complex mixture of factors present in cell-conditioned media. Rapamycin also inhibited the multiplication of colony-forming cells in suspension cultures containing IL-3 plus interleukin-1 (IL-1) or interleukin-11 (IL-11) plus KL. In vivo, treatment for 10 to 28 days with high doses of rapamycin (50 mg/kg/d, orally) had no effect on myelopoiesis in normal mice, as measured by bone marrow cellularity, proliferative capacity, and number of colony-forming progenitors. In contrast, the same treatment strongly suppressed the hematopoietic recovery normally seen 10 days after an injection of 5-fluorouracil (5- FU; 150 mg/kg, intravenously [i.v.]). Thus, rapamycin may be detrimental in myelocompromised individuals. In addition, the results suggest that the rapamycin-sensitive cytokine-driven pathways are essential for hematopoietic recovery after myelodepression, but not for steady-state hematopoiesis.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 798-805 ◽  
Author(s):  
BR Blazar ◽  
DL Thiele ◽  
DA Vallera

Abstract Incubation of murine bone marrow and splenocytes with the dipeptide methyl ester, L-leucyl-L-leucine methyl ester (Leu-Leu-OMe), which results in the selective depletion of cytotoxic T cells and their precursors, natural killer cells, and monocytes, completely protected 30 recipients of fully allogeneic donor grafts from lethal graft-versus- host disease (GVHD). These results were comparable with those obtained in 30 recipients of anti-Thy 1.2 plus complement (C')-treated donor marrow. However, in contrast to antibody- and C'-dependent T-cell depletion, which reduces the level of donor cell engraftment in our model system, we did not observe such effects using Leu-Leu-OMe marrow pretreatment. As compared with the 24 H-2 typed recipients of anti-Thy 1.2 + C'-treated donor grafts, the 29 H-2 typed recipients of Leu-Leu- OMe-treated donor grafts had significantly (P less than .001) higher percentages of donor cells (mean = 93% v 74%) and significantly (P less than .001) lower percentages of host cells (mean = 6% v 15%) posttransplantation. In vitro limiting dilution assay (LDA) was performed to assess the comparative efficacy of cytolytic T-lymphocyte (CTL) precursor depletion by Leu-Leu-OMe or anti-Thy 1.2 + C' pretreatment. We observed greater levels of CTL precursor depletion in Leu-Leu-OMe treated as compared with anti-Thy 1.2 + C'-treated bone marrow plus spleen cells (BMS) obtained from nontransplanted mice. This suggests that the in vivo results cannot simply be attributed to a less efficacious functional inactivation of cytolytic T-cell precursors by Leu-Leu-OMe treatment as compared with anti-Thy 1.2 + C' treatment. Immunoreconstitution was similar in recipients of Leu-Leu-OMe-treated grafts and anti-Thy 1.2 + C'-treated grafts 100 days posttransplant. In our opinion, Leu-Leu-OMe marrow pretreatment deserves further investigation as a methodology to achieve GVHD prevention without significantly reducing the propensity toward host cell repopulation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 374-374 ◽  
Author(s):  
Zhong-fa Yang ◽  
Karen Drumea ◽  
Alan G. Rosmarin

Abstract GABP is an ets transcription factor that regulates genes that are required for innate immunity, including CD18 (β2 leukocyte integrin), lysozyme, and neutrophil elastase. GABP consists of two distinct and unrelated proteins. GABPα binds to DNA through its ets domain and recruits GABPβ, which contains the transactivation domain; together, they form a functional tetrameric transcription factor complex. We recently showed that GABP is required for entry into S phase of the cell cycle through its regulation of genes that are required for DNA synthesis and cyclin dependent kinase inhibitors (Yang, et al. Nature Cell Biol9:339, 2007). Furthermore, GABP is an essential component of a retinoic acid responsive myeloid enhanceosome (Resendes and Rosmarin Mol Cell Biol26:3060, 2006). We cloned Gabpa (the gene that encodes mouse Gabpα) from a mouse genomic BAC library and prepared a targeting vector in which the ets domain is flanked by loxP recombination sites (floxed allele). Deletion of both floxed Gabpa alleles causes an early embryonic lethal defect. In order to define the role of Gabpα in myelopoiesis, we bred floxed Gabpa mice to mice that bear the Mx1-Cre transgene, which drives expression of Cre recombinase in response to injection of the synthetic polynucleotide, poly I-C. Deletion of Gabpa dramatically reduced granulocytes and monocytes in the peripheral blood, spleen, and bone marrow, but myeloid cells recovered within weeks. In vitro colony forming assays indicated that myeloid cells in these mice were derived only from Gabpa replete myeloid precursors (that failed to delete both Gabpa alleles), suggesting strong pressure to retain Gabpα in vivo. We used a novel competitive bone marrow transplantation approach to determine if Gabp is required for myeloid cell development in vivo. Sub-lethally irradiated wild-type recipient mice bearing leukocyte marker CD45.1 received equal proportions of bone marrow from wild type CD45.1 donor mice and floxed-Mx1-Cre donor mice that bear CD45.2. Both the CD45.2 (floxed-Mx1-Cre) and CD45.1 (wild type) bone marrow engrafted well. Mice were then injected with pI-pC to induce Cre-mediated deletion of floxed Gabpa. The mature myeloid and T cell compartments were derived almost entirely from wild type CD45.1 cells. This indicates that the proliferation and/or differentiation of myeloid and T cell lineages requires Gabp. In contrast, B cell development was not impaired. We conclude that Gabpa disruption causes a striking loss of myeloid cells in vivo and corroborates prior in vitro data that GABP plays a crucial role in proliferation of myeloid progenitor cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1999-1999
Author(s):  
Annie L. Oh ◽  
Dolores Mahmud ◽  
Benedetta Nicolini ◽  
Nadim Mahmud ◽  
Elisa Bonetti ◽  
...  

Abstract Our previous studies have shown the ability of human CD34+ cells to stimulate T cell alloproliferative responses in-vitro. Here, we investigated anti-CD34 T cell alloreactivity in-vivo by co-transplanting human CD34+ cells and allogeneic T cells of an incompatible individual into NSG mice. Human CD34+ cells (2x105/animal) were transplanted with allogeneic T cells at different ratios ranging from 1:50 to 1:0.5, or without T cells as a control. No xenogeneic GVHD was detected at 1:1 CD34:T cell ratio. Engraftment of human CD45+ (huCD45+) cells in mice marrow and spleen was analyzed by flow cytometry. Marrow engraftment of huCD45+ cells at 4 or 8 weeks was significantly decreased in mice transplanted with T cells compared to control mice that did not receive T cells. More importantly, transplantation of T cells at CD34:T cell ratios from 1:50 to 1:0.5 resulted in stem cell rejection since >98% huCD45+ cells detected were CD3+. In mice with stem cell rejection, human T cells had a normal CD4:CD8 ratio and CD4+ cells were mostly CD45RA+. The kinetics of human cell engraftment in the bone marrow and spleen was then analyzed in mice transplanted with CD34+ and allogeneic T cells at 1:1 ratio and sacrificed at 1, 2, or 4 weeks. At 2 weeks post transplant, the bone marrow showed CD34-derived myeloid cells, whereas the spleen showed only allo-T cells. At 4 weeks, all myeloid cells had been rejected and only T cells were detected both in the bone marrow and spleen. Based on our previous in-vitro studies showing that T cell alloreactivity against CD34+ cells is mainly due to B7:CD28 costimulatory activation, we injected the mice with CTLA4-Ig (Abatacept, Bristol Myers Squibb, New York, NY) from d-1 to d+28 post transplantation of CD34+ and allogeneic T cells. Treatment of mice with CTLA4-Ig prevented rejection and allowed CD34+ cells to fully engraft the marrow of NSG mice at 4 weeks with an overall 13± 7% engraftment of huCD45+ marrow cells (n=5) which included: 53±9% CD33+ cells, 22±3% CD14+ monocytes, 7±2% CD1c myeloid dendritic cells, and 4±1% CD34+ cells, while CD19+ B cells were only 3±1% and CD3+ T cells were 0.5±1%. We hypothesize that CTLA4-Ig may induce the apoptotic deletion of alloreactive T cells early in the post transplant period although we could not detect T cells in the spleen as early as 7 or 10 days after transplant. Here we demonstrate that costimulatory blockade with CTLA4-Ig at the time of transplant of human CD34+ cells and incompatible allogeneic T cells can prevent T cell mediated rejection. We also show that the NSG model can be utilized to test immunotherapy strategies aimed at engrafting human stem cells across HLA barriers in-vivo. These results will prompt the design of future clinical trials of CD34+ cell transplantation for patients with severe non-malignant disorders, such as sickle cell anemia, thalassemia, immunodeficiencies or aplastic anemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3263-3271 ◽  
Author(s):  
Maria Montoya ◽  
Giovanna Schiavoni ◽  
Fabrizio Mattei ◽  
Ion Gresser ◽  
Filippo Belardelli ◽  
...  

Abstract Resting dendritic cells (DCs) are resident in most tissues and can be activated by environmental stimuli to mature into potent antigen-presenting cells. One important stimulus for DC activation is infection; DCs can be triggered through receptors that recognize microbial components directly or by contact with infection-induced cytokines. We show here that murine DCs undergo phenotypic maturation upon exposure to type I interferons (type I IFNs) in vivo or in vitro. Moreover, DCs either derived from bone marrow cells in vitro or isolated from the spleens of normal animals express IFN-α and IFN-β, suggesting that type I IFNs can act in an autocrine manner to activate DCs. Consistent with this idea, the ability to respond to type I IFN was required for the generation of fully activated DCs from bone marrow precursors, as DCs derived from the bone marrow of mice lacking a functional receptor for type I IFN had reduced expression of costimulatory and adhesion molecules and a diminished ability to stimulate naive T-cell proliferation compared with DCs derived from control bone marrow. Furthermore, the addition of neutralizing anti–IFN-α/β antibody to purified splenic DCs in vitro partially blocked the “spontaneous” activation of these cells, inhibiting the up-regulation of costimulatory molecules, secretion of IFN-γ, and T-cell stimulatory activity. These results show that DCs both secrete and respond to type I IFN, identifying type I interferons as autocrine DC activators.


Blood ◽  
2010 ◽  
Vol 115 (10) ◽  
pp. 2095-2104 ◽  
Author(s):  
Eran Ophir ◽  
Yaki Eidelstein ◽  
Ran Afik ◽  
Esther Bachar-Lustig ◽  
Yair Reisner

Abstract Enabling engraftment of allogeneic T cell–depleted bone marrow (TDBM) under reduced-intensity conditioning represents a major challenge in bone marrow transplantation (BMT). Anti–third-party cytotoxic T lymphocytes (CTLs) were previously shown to be endowed with marked ability to delete host antidonor T cells in vitro, but were found to be less effective in vivo. This could result from diminished lymph node (LN) homing caused by the prolonged activation, which induces a CD44+CD62L− effector phenotype, and thereby prevents effective colocalization with, and neutralization of, alloreactive host T cells (HTCs). In the present study, LN homing, determined by imaging, was enhanced upon culture conditions that favor the acquisition of CD44+CD62L+ central memory cell (Tcm) phenotype by anti–third-party CD8+ cells. These Tcm-like cells displayed strong proliferation and prolonged persistence in BM transplant recipients. Importantly, adoptively transferred HTCs bearing a transgenic T-cell receptor (TCR) with antidonor specificity were efficiently deleted only by donor-type Tcms. All these attributes were found to be associated with improved efficacy in overcoming T cell–mediated rejection of TDBM, thereby enabling high survival rate and long-term donor chimerism, without causing graft-versus-host disease. In conclusion, anti–third-party Tcms, which home to recipient LNs and effectively delete antidonor T cells, could provide an effective and novel tool for overcoming rejection of BM allografts.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jialing Liu ◽  
Yanmei Zhang ◽  
Hongqin Sheng ◽  
Chunling Liang ◽  
Huazhen Liu ◽  
...  

Accumulating evidence reveals that both inflammation and lymphocyte dysfunction play a vital role in the development of diabetic nephropathy (DN). Hyperoside (HPS) or quercetin-3-O-galactoside is an active flavonoid glycoside mainly found in the Chinese herbal medicine Tu-Si-Zi. Although HPS has a variety of pharmacological effects, including anti-oxidative and anti-apoptotic activities as well as podocyte-protective effects, its underlying anti-inflammatory mechanisms remain unclear. Herein, we investigated the therapeutic effects of HPS on murine DN and the potential mechanisms responsible for its efficacy. We used C57BLKS/6J Lepdb/db mice and a high glucose (HG)-induced bone marrow-derived macrophage (BMDM) polarization system to investigate the potentially protective effects of HPS on DN. Our results showed that HPS markedly reduced diabetes-induced albuminuria and glomerular mesangial matrix expansion, accompanied with a significant improvement of fasting blood glucose level, hyperlipidaemia and body weight. Mechanistically, pretreatment with HPS effectively regulated macrophage polarization by shifting proinflammatory M1 macrophages (F4/80+CD11b+CD86+) to anti-inflammatory M2 ones (F4/80+CD11b+CD206+) in vivo and in bone marrow-derived macrophages (BMDMs) in vitro, resulting in the inhibition of renal proinflammatory macrophage infiltration and the reduction in expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF-α) and inducible nitric oxide synthase (iNOS) while increasing expression of anti-inflammatory cytokine Arg-1 and CD163/CD206 surface molecules. Unexpectedly, pretreatment with HPS suppressed CD4+ T cell proliferation in a coculture model of IL-4-induced M2 macrophages and splenic CD4+ T cells while promoting their differentiation into CD4+IL-4+ Th2 and CD4+Foxp3+ Treg cells. Taken together, we demonstrate that HPS ameliorates murine DN via promoting macrophage polarization from an M1 to M2 phenotype and CD4+ T cell differentiation into Th2 and Treg populations. Our findings may be implicated for the treatment of DN in clinic.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2587-2587 ◽  
Author(s):  
Chad R Burk ◽  
William Fix ◽  
Haiying Qin ◽  
Terry J Fry

Abstract Abstract 2587 Background: Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy and, despite tremendous success in therapy over the past 3 decades, remains a primary cause of cancer-related mortality in children. Enthusiasm for the use cellular immunotherapy for ALL has been tempered by the poor response to donor lymphocyte infusions following allogeneic hematopoietic stem cell transplantation. However, ALL blasts are susceptible to T cell and NK cell mediated lysis in vitro suggesting that poor response to in vivo immune interventions may be due to events occurring during the priming of the immune response. Using a murine model of precursor B cell ALL we examined the impact of leukemia progression on T cells in vivo. Methods: We developed a transplantable syngeneic model of pediatric ALL derived from transgeneic mice expressing human E2aPBX1, a recurring translocation present in 5% of pediatric leukemia (Bijl et al, Genes and Development, 2005). This murine line displays a precursor B cell phenotype and results in 100% lethality following injection of 100,000 cells (Qin et al, ASH, 2010). Using congenic (CD45.1) B6 recipients, we tracked the early progression of ALL in vivo and examined the T cells in the leukemia-containing compartments by flow cytometry and PCR. Results: Using congenic markers, ALL cells can be detected in bone marrow as early as 3 days following intravenous injection of 1,000,000 cells with a sensitivity of 0.01%. Spleen and lymph node involvement was seen later (10 days) followed by the detection of circulating blasts by 2 weeks. E2aPBX1 cells express variable levels of costimulatory molecules in vitro with no change in expression during in vivo progression. Notably, PDL1 and PDL2 are expressed both in vitro and in vivo at higher levels than on non-malignant precursor B cells in leukemia-bearing mice. Remarkably, although PD1+ T cells are not seen in the bone marrow of non-leukemia-bearing mice, PD1 expression on bone marrow T cells was markedly increased during progression such that 60–80% of all bone marrow CD4 and CD8 T cells were positive by 2 weeks following leukemia injection (figure). In addition to expression of PD1, these T cells also co-expressed Tim3, a phenotype associated with T cell exhaustion. Blockade of PD1 or PDL1 starting 3 days following leukemia injection had no impact on leukemia progression. However, combining PD1 blockade with the adoptive transfer of T cells from leukemia-primed donors resulted in improved survival compared to primed T cells alone (p=0.0004). Conclusions: Early progression of ALL results in the induction of PD1 and Tim3 on T cells in vivo. Combination of PD1 blockade plus adoptive T cell therapy results in therapeutic benefit suggesting that this axis may be an attractive target in ALL. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document