Markers of Endothelial Angiogenic Dysfunction in Patients with Antiphospholipid Antibodies

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2300-2300
Author(s):  
Karen A Breen ◽  
Kiran Parmar ◽  
Beverley J Hunt

Abstract Abstract 2300 Background: The antiphospholipid syndrome (APS) is characterised by presence of persistent antiphospholipid antibodies in association with thrombosis and/or pregnancy morbidity and mortality. Activation of endothelial cells by aPL has been proposed to pay a role in the pathogenesis of APS;antiphospholipid antibodies(aPL) activate endothelial cells in vitro and some evidence of endothelial cell perturbation has been found in patients with aPL. Vascular endothelial growth factor(VEGF) promotes endothelial cell growth and angiogenesis and has been shown to upregulate tissue factor(TF), and elevated VEGF levels have been found to correlate with elevated TF levels in APS. Soluble FMS like tyrosine kinase −1(SLFT-1) and soluble Endoglin(sENG) are antiangiogenic proteins. sFLT1 is a variant of the VEGF receptor released by endothelial cells and monocytes, binds VEGF causing endothelial dysfunction and decreased angiogenesis. sENG is a TGFβ co-receptor which impairs TGF β1 receptor binding and its downstream signalling effects. sFLT-1 and sENG are implicated in the pathogenesis of pre-eclampsia, and are elevated in disorders associated with endothelial dysfunction such as sickle cell disease, chronic kidney disease and coronary artery disease, but have not been studied in patients with aPL. Aims: The aim of this study was to measure sFLT1, sENG, sTF and VEGF in patients with aPL. Materials & methods: Local ethics committee approval was obtained and samples were taken from 182 patients (175 females, 7 males, median age 42 (range 19–73) years) who had PAPS, or had persistent aPL without associated complications. 28 healthy controls (28 females, median age (range 20–58) years) were included. Patients with PAPS included 95 with thrombotic complications, 48 with obstetric complications and 39 with isolated aPL. Patients with intercurrent infection or malignancy were excluded and the control group were not known to have aPL. Blood was drawn into Vacutainers containing EDTA 0.105M and processed within 3 hours of collection. ELISA assays measuring sFLT1, sENG, VEGF and sTF levels were performed according to manufacturer's protocol (Quidel, Pathway diagnostics ltd., Dorking, UK). Intra-assay CV for sFLT1,sENG, VEGF and sTF was 3.0,3.3,4.8 and 6.0 respectively. Inter assay CV for sFLT1,sENG, VEGF and sTF was 6.5,7.6, 7.4 and 5.0 respectively. Statistical analysis of results was performed using the Stata-11 software statistical package. Logarithmic transformation of data was performed and differences between groups were compared using linear regression methods, adjusting for age, ethnicity and medications. Results: Results are shown below in table 1 and are described as means and 95% confidence intervals (adjusted for age, sex, ethnicity and medications). sFLT1 and sENG levels were significantly higher in patients with aPL/PAPS compared to healthy controls(p<0.05). TF levels were significantly lower in patients with aPL/PAPS compared to healthy controls(p<0.05). There were no significant differences in VEGF levels in patients with aPL compared to controls(regardless of complication). When patients were categorised according to aPL related complication (thrombotic APS, obstetric aPS, isolated aPL), sFLT1 and sENG levels were found to be significantly higher in patients with thrombotic APS(p<0.05) compared to controls, sFLT1 levels were also significantly elevated in obstetric APS. TF levels were significantly lower in patients with obstetric APS and isolated aPL compared to controls. There were no differences between patients with aPL and controls when means were adjusted for age, ethnicity or medications. sFLT1 was associated with the presence of aPL/PAPS(area under ROC=0.76), whereas sENG had a weaker association (area under ROC: 0.65). Conclusions: We have demonstrated evidence of increased levels of sENG and sFLT1 in patients with aPL/PAPS.This suggests that there is underlying endothelial dysfunction in patients with APS. The role of sENG and sFLT1 in the pathogenesis of APS requires further exploration. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4315-4315
Author(s):  
Kristi L Allen ◽  
Mukesh K Jain ◽  
Keith R McCrae

Abstract Abstract 4315 Antiphospholipid syndrome (APS) is characterized by thrombosis and/or pregnancy loss in the presence of antiphospholipid antibodies (APLA). These antibodies are directed primarily against phospholipid-bound β2-glycoprotein I (β2GPI). Anti-β2GPI antibodies activate endothelial cells, enhancing the expression of adhesion molecules and tissue factor, and the secretion of proinflammatory cytokines. Krüppel-like factors (KLF) regulate endothelial cell inflammatory responses. KLF2 and KLF4 mediate anti-atherosclerotic and anti-inflammatory effects in endothelial cells, and we have hypothesized that alterations in the expression or activity of KLF2 or KLF4 may modulate the endothelial cell response to APLA. In preliminary studies, we have observed that endothelial cell activation induced by APLA/anti-β2GPI antibodies inhibits the expression of KLF2 and KLF4, and as demonstrated by our laboratory and others, is accompanied by activation of NF-kB. However, forced expression of KLF2 or KLF4 by plasmid-mediated transfection of endothelial cells inhibits neither the phosphorylation of ser536 of the p65 subunit of NF-kB, nor the nuclear translocation of p65 in response to APLA/anti-β2GPI antibodies. Despite the lack of effect on forced KLF2 or KLF4 expression in endothelial cells on p65 phosphorylation, expression of either of these factors inhibits NF-κB transcriptional activity with corresponding inhibition of cellular activation as measured by inhibition of cell-surface E-selectin expression as well as E-selectin promoter activity. Inhibition of NF-kB transcriptional activity by KLF2 and KLF4 appears to be due to recruitment of the CBP/p300 cofactor away from NF-kB by KLF2 or KLF4, since augmenting the cellular pool of CBP/p300 by transfection restores NF-κB activity and endothelial cell activation responses. Similarly, treatment of APLA-activated endothelial cells with CBP/p300 siRNA inhibits NF-kB transcriptional activity regardless of the levels of KLF2 or KLF4. These data suggest that APLA inhibit KLF expression and that these changes promote the acquisition of a prothrombotic endothelial cell phenotype. CBP/p300 may serve as a molecular switch that determines the relative antithrombotic activities of KLFs versus the prothrombotic, inflammatory responses induced by NF-kB in APLA/anti-β2GPI antibody activated endothelial cells. Disclosures: No relevant conflicts of interest to declare.


1997 ◽  
Vol 77 (06) ◽  
pp. 1081-1085 ◽  
Author(s):  
R Fijnheer ◽  
C J M Frijns ◽  
J Korteweg ◽  
H Rommes ◽  
J H Peters ◽  
...  

SummaryP-selectin is a 140 kD protein found in the α-granules of platelets and the Weibel-Palade bodies of endothelial cells. On cell activation it is expressed on the cell surface and also secreted into plasma. Whether the circulating soluble P-selectin (sP-selectin) originates from platelets, endothelial cells, or both, is not known. We studied the level of sP-selectin in diseases with different platelet counts, with or without evidence of endothelial cell activation. Endothelial cell activation was confirmed by the detection of sE-selectin and EDl-fibronectin. A significant positive correlation between platelet count and sP-selectin concentration was observed in healthy controls, and in patients with thrombocytopenia due to bone marrow aplasia, or with thrombocytosis (r = 0.85; n = 47; p <0.001). In patients with idiopathic thrombocytopenic purpura (ITP) the sP-selectin concentration was 110 ± 39 ng/ml (n = 10), compared to 122 ± 38 ng/ml in healthy controls (n = 26). However, their mean platelet count was lower (58 X 109/1 versus 241 X 109/1 in the control group). Accordingly, the levels of sP-selectin expressed per platelet increased to significantly higher levels (2.0 ± 1.2 versus 0.6 ± 0.2 fg/platelet in the control group-; p <0.0001). This suggests increased platelet turnover in patients with ITP. High levels of sP-selectin were found in patients with sepsis (398 ± 203 ng/ml; n = 15) and with thrombotic thrombocytopenic purpura (TTP; 436 ± 162 ng/ml; n = 12). Compared with patients with ITP, the concentration of sP-selectin per platelet was higher in patients with sepsis (4.8 ± 4.3 fg/platelet; p <0.005) or TTP (17.1 ± 9.5 fg/platelet; p <0.001). Endothelial cells are very likely to be the source in these patients and the presence of endothelial cell activation was confirmed by increased levels of circulating E-selectin and ED 1 -fibronectin.This study suggests that platelets are the major source of circulating sP-selectin in healthy individuals. Endothelial cell activation is associated with an increased sP-selectin concentration per platelet.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Girão-Silva ◽  
M. H. Fonseca-Alaniz ◽  
J. C. Ribeiro-Silva ◽  
J. Lee ◽  
N. P. Patil ◽  
...  

AbstractThe rate of the remodeling of the arterialized saphenous vein conduit limits the outcomes of coronary artery bypass graft surgery (CABG), which may be influenced by endothelial dysfunction. We tested the hypothesis that high stretch (HS) induces human saphenous vein endothelial cell (hSVEC) dysfunction and examined candidate underlying mechanisms. Our results showed that in vitro HS reduces NO bioavailability, increases inflammatory adhesion molecule expression (E-selectin and VCAM1) and THP-1 cell adhesion. HS decreases F-actin in hSVECs, but not in human arterial endothelial cells, and is accompanied by G-actin and cofilin’s nuclear shuttling and increased reactive oxidative species (ROS). Pre-treatment with the broad-acting antioxidant N-acetylcysteine (NAC) supported this observation and diminished stretch-induced actin remodeling and inflammatory adhesive molecule expression. Altogether, we provide evidence that increased oxidative stress and actin cytoskeleton remodeling play a role in HS-induced saphenous vein endothelial cell dysfunction, which may contribute to predisposing saphenous vein graft to failure.


2008 ◽  
Vol 295 (1) ◽  
pp. H174-H184 ◽  
Author(s):  
Katherine A. Radek ◽  
Elizabeth J. Kovacs ◽  
Richard L. Gallo ◽  
Luisa A. DiPietro

Physiological angiogenesis is regulated by various factors, including signaling through vascular endothelial growth factor (VEGF) receptors. We previously reported that a single dose of ethanol (1.4 g/kg), yielding a blood alcohol concentration of 100 mg/dl, significantly impairs angiogenesis in murine wounds, despite adequate levels of VEGF, suggesting direct effects of ethanol on endothelial cell signaling (40). To examine the mechanism by which ethanol influences angiogenesis in wounds, we employed two different in vitro angiogenesis assays to determine whether acute ethanol exposure (100 mg/dl) would have long-lasting effects on VEGF-induced capillary network formation. Ethanol exposure resulted in reduced VEGF-induced cord formation on collagen and reduced capillary network structure on Matrigel in vitro. In addition, ethanol exposure decreased expression of endothelial VEGF receptor-2, as well as VEGF receptor-2 phosphorylation in vitro. Inhibition of ethanol metabolism by 4-methylpyrazole partially abrogated the effect of ethanol on endothelial cell cord formation. However, mice treated with t-butanol, an alcohol not metabolized by alcohol dehydrogenase, exhibited no change in wound vascularity. These results suggest that products of ethanol metabolism are important factors in the development of ethanol-induced changes in endothelial cell responsiveness to VEGF. In vivo, ethanol exposure caused both decreased angiogenesis and increased hypoxia in wounds. Moreover, in vitro experiments demonstrated a direct effect of ethanol on the response to hypoxia in endothelial cells, as ethanol diminished nuclear hypoxia-inducible factor-1α protein levels. Together, the data establish that acute ethanol exposure significantly impairs angiogenesis and suggest that this effect is mediated by changes in endothelial cell responsiveness to both VEGF and hypoxia.


2012 ◽  
Vol 302 (7) ◽  
pp. F884-F894 ◽  
Author(s):  
Nidia Maritza Hernandez ◽  
Anna Casselbrant ◽  
Meghnad Joshi ◽  
Bengt R. Johansson ◽  
Suchitra Sumitran-Holgersson

Anti-endothelial cell antibodies (AECA) have been reported to cause endothelial dysfunction, but their clinical importance for tissue-specific endothelial cells is not clear. We hypothesized that AECA reactive with human kidney endothelial cells (HKEC) may cause renal endothelial dysfunction in patients with chronic kidney diseases. We report that a higher fraction (56%) of end-stage renal disease (ESRD) patients than healthy controls (5%) have AECA reactive against kidney endothelial cells ( P <0.001). The presence of antibodies was associated with female gender ( P < 0.001), systolic hypertension ( P < 0.01), and elevated TNF-α ( P < 0.05). These antibodies markedly decrease expression of both adherens and tight junction proteins VE-cadherin, claudin-1, and zonula occludens-1 and provoked a rapid increase in cytosolic free Ca2+and rearrangement of actin filaments in HKEC compared with controls. This was followed by an enhancement in protein flux and phosphorylation of VE-cadherin, events associated with augmented endothelial cell permeability. Additionally, kidney biopsies from ESRD patients with AECA but not controls demonstrated a marked decrease in adherens and tight junctions in glomerular endothelium, confirming our in vitro data. In summary, our data demonstrate a causal link between AECA and their capacity to induce alterations in glomerular vascular permeability.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Luke Hoeppner ◽  
Sutapa Sinha ◽  
Ying Wang ◽  
Resham Bhattacharya ◽  
Shamit Dutta ◽  
...  

Vascular permeability factor/vascular endothelial growth factor A (VEGF) is a central regulator of angiogenesis and potently promotes vascular permeability. VEGF plays a key role in the pathologies of heart disease, stroke, and cancer. Therefore, understanding the molecular regulation of VEGF signaling is an important pursuit. Rho GTPase proteins play various roles in vasculogenesis and angiogenesis. While the functions of RhoA and RhoB in these processes have been well defined, little is known about the role of RhoC in VEGF-mediated signaling in endothelial cells and vascular development. Here, we describe how RhoC modulates VEGF signaling to regulate endothelial cell proliferation, migration and permeability. We found VEGF stimulation activates RhoC in human umbilical vein endothelial cells (HUVECs), which was completely blocked after VEGF receptor 2 (VEGFR-2) knockdown indicating that VEGF activates RhoC through VEGFR-2 signaling. Interestingly, RhoC knockdown delayed the degradation of VEGFR-2 compared to control siRNA treated HUVECs, thus implicating RhoC in VEGFR-2 trafficking. In light of our results suggesting VEGF activates RhoC through VEGFR-2, we sought to determine whether RhoC regulates vascular permeability through the VEGFR-2/phospholipase Cγ (PLCγ) /Ca 2+ /eNOS cascade. We found RhoC knockdown in VEGF-stimulated HUVECs significantly increased PLC-γ1 phosphorylation at tyrosine 783, promoted basal and VEGF-stimulated eNOS phophorylation at serine 1177, and increased calcium flux compared with control siRNA transfected HUVECs. Taken together, our findings suggest RhoC negatively regulates VEGF-induced vascular permeability. We confirmed this finding through a VEGF-inducible zebrafish model of vascular permeability by observing significantly greater vascular permeability in RhoC morpholino (MO)-injected zebrafish than control MO-injected zebrafish. Furthermore, we showed that RhoC promotes endothelial cell proliferation and negatively regulates endothelial cell migration. Our data suggests a scenario in which RhoC promotes proliferation by upregulating -catenin in a Wnt signaling-independent manner, which in turn, promotes Cyclin D1 expression and subsequently drives cell cycle progression.


2000 ◽  
Vol 113 (1) ◽  
pp. 59-69 ◽  
Author(s):  
M.F. Carlevaro ◽  
S. Cermelli ◽  
R. Cancedda ◽  
F. Descalzi Cancedda

Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Ting Wang

With the prevalence of antiviral therapy in the developed world, many HIV-1-infected people die of diseases other than AIDS. One of the emerging major causes is cardiovascular disease, leading to the prediction that the majority of HIV-1 patients are expected to develop cardiovascular complications. Endothelial dysfunction is thought to be a key event in the development of cardiovascular diseases, particularly atherosclerosis. Assays testing the effect of HIV-1 on endothelial activation shows that direct contact with HIV-1 infected T cells enhance endothelial cell activation to a greater extent than HIV-1 alone, suggesting an intracellular HIV-1 protein is responsible for endothelial activation. The HIV-1 viral protein Nef, which is responsible for T cell activation and maintenance of high viral loads in vivo , has been shown to mediate its own transfer to bystander cells. We demonstrate here for the first time that Nef induces nanotube-like conduits connecting T cells and endothelial cells. We also show that Nef is transferred from T cells to endothelial cells via these nanotubes, and is necessary and sufficient for endothelial cell activation. Moreover, we show that SIV-infected macaques exhibit endothelial Nef expression in coronary arteries. Nef expression in endothelial cells causes endothelial apoptosis, ROS and MCP-1 production. Interestingly, a Nef SH3 binding site mutant abolishes Nef-induced apoptosis and ROS formation and reduces MCP-1 production in endothelial cells, suggesting that the Nef SH3 binding site is critical for Nef effects on endothelial cells. Nef induces apoptosis of endothelial cells through an NADPH oxidase- and ROS-dependent mechanism, while Nef-induced MCP-1 production is NF-kB dependent. Taken together, these data suggest that Nef can mediate its transfer from T cells to endothelial cells through nanotubes to enhance endothelial dysfunction.Thus, Nef is a promising new therapeutic target for reducing the risk for cardiovascular disease in the HIV-1 positive population.


1995 ◽  
Vol 4 (3) ◽  
pp. 291-296 ◽  
Author(s):  
H.M.H. Carr ◽  
J.V. Smyth ◽  
O.B. Rooney ◽  
P.D. Dodd ◽  
H. Sharma ◽  
...  

Indium-111 oxine labeling is widely used as a marker of endothelial cell attachment to vascular prostheses. The long term effect of labeling human adult endothelial cells (HAECs) with this isotope has not been determined. In this study the viability of labeled HAECs, leakage of isotope from labeled cells and adherence of circulating isotope to fibronectin coated prostheses were investigated over 24 h. The effect of incubation time on labeling efficiency was also assessed. There were significant differences in cell viability between the labeled and unlabeled groups beyond 4 h (p < 0.005, 2-tailed, unpaired t-test). In the control group cell numbers increased by 42% while in the labeled group this had decreased by 20% at 24 h. Spontaneous leakage increased with time but was maximal in the first 2 h. Adherence of circulating isotope to fibronectin coated expanded polytetrafluoroethylene (ePTFE) grafts was minimal but was significantly greater to gelatin impregnated Dacron (GEL-SEAL) beyond 1 hour (p < 0.05). Incubation times greater than 5 minutes during labeling do not significantly improve labeling efficiency, and may contribute to toxicity by prolonging exposure to oxine. Indium-111 oxine labeling of HAECs is a suitable technique for acute studies of endothelial cell kinetics up to 4 h, but its use in chronic studies may lead to significant underestimations of cell retention.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alina Klems ◽  
Jos van Rijssel ◽  
Anne S. Ramms ◽  
Raphael Wild ◽  
Julia Hammer ◽  
...  

Abstract Arterial networks enlarge in response to increase in tissue metabolism to facilitate flow and nutrient delivery. Typically, the transition of a growing artery with a small diameter into a large caliber artery with a sizeable diameter occurs upon the blood flow driven change in number and shape of endothelial cells lining the arterial lumen. Here, using zebrafish embryos and endothelial cell models, we describe an alternative, flow independent model, involving enlargement of arterial endothelial cells, which results in the formation of large diameter arteries. Endothelial enlargement requires the GEF1 domain of the guanine nucleotide exchange factor Trio and activation of Rho-GTPases Rac1 and RhoG in the cell periphery, inducing F-actin cytoskeleton remodeling, myosin based tension at junction regions and focal adhesions. Activation of Trio in developing arteries in vivo involves precise titration of the Vegf signaling strength in the arterial wall, which is controlled by the soluble Vegf receptor Flt1.


Sign in / Sign up

Export Citation Format

Share Document