CD147 Is a Novel Regulator of Progression and Proliferation of Multiple Myeloma Plasma Cells

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 470-470
Author(s):  
Bonnie K. Arendt ◽  
Denise K. Walters ◽  
Xiaosheng Wu ◽  
Renee C. Tschumper ◽  
Paul M. Huddleston ◽  
...  

Abstract Abstract 470 Multiple myeloma (MM) is an incurable and fatal neoplasm characterized by the accumulation of clonal plasma cells (PC) that results in significant end organ and tissue damage. MM is preceded by either of two premalignant asymptomatic stages, monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM), both of which are identified by the presence of clonally expanded abnormal PC populations. While MGUS and SMM patients' abnormal PC populations may remain stable for years, both have a life-long significantly increased risk of progressing to MM (1% and 10% per year, respectively). For this reason, a better understanding of the molecular events prompting malignant progression and increased accuracy in identifying those patients that have begun to transition to MM is urgently needed. In this study, we identified a novel MM marker, CD147 (also known as extracellular matrix metalloproteinase inducer (MMP), or EMMPRIN), that is not only over-expressed on MM PCs as compared to its premalignant counterparts, but whose increased expression correlates with the level of abnormal PC proliferation. To our knowledge, we are the first to demonstrate a role for CD147 in MM. CD147 has been shown by others to display a variety of activities and those with potential relevance to MM include stimulation of increased MMP production and angiogenesis, and playing a critical role in glycolysis via facilitation of excess cellular lactate transport. Our initial experiments revealed that MM PCs overexpress CD147 mRNA relative to MGUS PCs. Flow cytometric analysis corroborated these data and demonstrated variable expression of CD147 across the disease continuum ranging from no expression to bimodal or uniform expression. Indeed, there was a significant difference between CD147 expression on MGUS and SMM PCs compared to that on MM PCs (p=0.02 and 0.005, respectively). We next determined whether CD147 had a signaling role in these cells. Using the natural CD147 ligand, cyclophilin B (CypB), we showed that addition of CypB to either human MM cell lines (HMCLs) or CD138+ patient PCs resulted in increased PC proliferation as measured by [3H]-thymidine incorporation. In a complementary manner, addition of CD147 antibodies significantly inhibited proliferation without an effect on cell viability. By western blot analysis we further demonstrated that CypB-mediated CD147 activation leads to MAPK phosphorylation. Next, we isolated CD147+ and CD147- MM cells from patients whose tumor cells bimodally expressed this marker and assessed the response of each subset to IL-6 and CypB. The CD147+ subset was almost solely responsible for the proliferative response in all cases examined. In addition, we cultured bone marrow mononuclear cells from CD147 bimodally expressing MM patients overnight with bromodeoxyuridine before performing cell cycle analysis on the CD147+ and CD147- MM PC populations. Remarkably, the CD147+ PCs were greatly enriched for cells in the S and G2/M phases of the cell cycle, whereas the CD147- PCs resided almost entirely in the G0/G1 phase. In the final set of experiments, we employed siRNA knockdown strategies using HMCLs to definitively test the role of CD147 in MM cell proliferation. Indeed, IL-6 induced proliferation was significantly compromised following CD147 down regulation, which was not attributed to increased apoptosis. However, IL-6 mediated phosphorylation of MAPK remained robust suggesting that the IL-6 signaling pathway overall was not compromised in these cells. Finally, cell cycle analysis demonstrated that CD147 down regulation resulted in a significant increase in the number of cells in the G0/G1 phase of the cell cycle and a decrease in the number of cells in the G2/M phase of the cell cycle, as compared to cells transfected with control siRNA. In conclusion, our data suggest that the CD147 molecule plays a critical role in the biology of malignant MM PCs, particularly as it concerns MM cell proliferation, and may thus serve as a useful and attractive target for reducing the proliferative compartment of this disease. Ongoing studies are investigating additional roles for MM cell CD147 expression, e.g., its role in MMP induction in the tumor microenviroment. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2200-2200
Author(s):  
Pan Zhou ◽  
Mengyu Xiao ◽  
Yanliang Bai ◽  
Huixia Cao ◽  
Weiping Yuan ◽  
...  

Abstract In addition to genetic aberrations, accumulating evidence indicates that deregulation of histone methyltransferases, such as MMSET, EZH2 and KDM6A, plays crucial roles in the oncogenic transformation and development of multiple myeloma (MM). For example, overexpression of MMSET leading to a global increase in H3K36me2, is believed to be the driving force in the pathogenesis of t (4;14) MM. However, as the histone methyltransferase is responsible for H3K36me3, the role of SETD2 is not been known in myeloma. To explore the possible clinical value of SETD2 in MM, we first examined the gene expression profile from GEO database, which indicated that the SETD2 expression was significantly decreased in MM patients when compared with monoclonal gammopathy of undetermined significance and smoldering multiple myeloma patients (GSE6477). Moreover, the expression of SETD2 decreased with the advanced international staging system stage of MM patients (GSE19784). The Kaplan-Meier analysis showed that low expression of SETD2 was significantly associated with a poor overall survival in MM patients (GSE2658, P<0.05; GSE9782, P<0.001). Thus, our analysis suggests that SETD2 might participate in cancer progression and could become a biomarker for the prognosis of patients with MM. We then investigated the biological role and the underlying mechanism of SETD2 in MM. Firstly, we used lentiviral-mediated RNA interference to knockdown SETD2 (SETD2 KD) in MM cell lines (RPMI8226 and MM.1S). CCK8 and colony-forming assays showed that reduced expression of SETD2 significantly promoted MM cell proliferation and colony growth. BrdU incorporation assay revealed increased DNA synthesis in SETD2 KD MM cells. Then, treatment with JIB-04, a small molecule inhibitor targeting H3K36me3 loss in SETD2 KD MM cells showed that H3K36me3 recovery was capable of reversing the tumor-promoting effect due to SETD2 down-regulation of MM cells in vitro. Moreover, the xenograft growth assay revealed that SETD2 down-regulation facilitated tumor growth and JIB-04 treatment exhibited anti-myeloma activity in vivo. Therefore, we conclude that SETD2 plays an important role in MM maintenance, and inhibition of H3K36me3 shows therapeutic efficacy for MM. To further explore the underlying mechanisms, we performed the RNA-Seq analysis and discovered that low H3K36me3 level was associated with reduced expression of CDKN1A and increased expression of TNFRSF17 (BCMA) and c-Myc in MM cells. The Gene Set Enrichment Analysis (GSEA) revealed that MAPK signaling pathway was enriched in SETD2 knockdown and JIB-04 treated MM cells. Subsequent Western blotting analysis further confirmed that SETD2 KD cells had increased JNK activation, while JIB-04 treated group showed decreased level of p-JNK. To investigate whether BCMA was the directly transcriptional target for H3K36me3, we carried out a dual-luciferase reporter assay in both SETD2 KD and JIB-04 treated MM cells, and confirmed that H3K36me3 inhibited the expression of BCMA through physically interacting with motifs in its promoter. Furthermore, down-regulation of BCMA in SETD2 KD MM cells could lead to a reduction of p-JNK and an up-regulation of CDKN1A, and resulting inhibited cell proliferation and cell cycle progression. Furthermore, blockage of the JNK pathway by its inhibitor SP600125 resulted in significant inhibition of MM cell proliferation induced by SETD2 knockdown. Additionally, suppression of c-Myc using 10058-F4 inhibited proliferation, and induced cell cycle arrest as well as CDKN1A expression in SETD2 KD MM cells. These results indicate that BCMA/JNK and c-Myc pathways were involved in STED2 and H3K36me3 mediated cell proliferation in MM. Together, our data delineate that SETD2-dependent H3K36me3 modification plays a critical role in regulation cell proliferation and cell cycle by BCMA-JNK and c-Myc pathways in MM cells. Targeting the SETD2-H3K36me3 pathway represents a promising therapy for MM. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Feifei Che ◽  
Chunqian Wan ◽  
Jingying Dai ◽  
Jiao Chen

Abstract Multiple myeloma (MM) is an incurable hematological malignancy characterized by abnormal infiltration of plasma cells in the bone marrow. MicroRNAs (miRNAs) have emerged as crucial regulators in human tumorigenesis and tumor progression. miR-27, a novel cancer-related miRNA, has been confirmed to be implicated in multiple types of human tumors; however, its biological role in MM remains largely unknown. The present study aimed to characterize the biological role of miR-27 in MM and elucidate the potential molecular mechanisms. Here we found that miR-27 was significantly up-regulated in MM samples compared with normal bone marrow samples from healthy donors. Moreover, the log-rank test and Kaplan–Meier survival analysis displayed that MM patients with high miR-27 expression experienced a significantly shorter overall survival than those with low miR-27 expression. In the current study, we transfected MM cells with miR-27 mimics or miR-27 inhibitor to manipulate its expression. Functional studies demonstrated that miR-27 overexpression promoted MM cell proliferation, facilitated cell cycle progression, and expedited cell migration and invasion; whereas miR-27 knockdown inhibited cell proliferation, induced cell cycle arrest, and slowed down cell motility. Mechanistic studies revealed that Sprouty homolog 2 (SPRY2) was a direct target of miR-27 and that rescuing SPRY2 expression reversed the promoting effects of miR-27 on MM cell proliferation, migration, and invasion. Besides, miR-27 ablation suppressed tumorigenecity of MM cells in mouse xenograft models. Collectively, our data indicate that miR-27 exerts its oncogenic functions in MM by targetting SPRY2 and that miR-27 may be used as a promising candidate target in MM treatment.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 245-245
Author(s):  
Jose Brito ◽  
Brian Walker ◽  
Faith Davies ◽  
Julie Irving ◽  
Gareth J. Morgan

Abstract Multiple myeloma (MM) is characterised by a clonal expansion of plasma cells in the bone marrow. The recurrent immunoglobulin translocation t(4;14)(p16;q32) occurs in 15% of MM patients and is associated with poor prognosis, through an unknown mechanism. The t(4;14) translocation up-regulates fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET (MMSET) genes. While the role of FGFR3 in myelomagenesis has been shown in various in vitro and in vivo studies, the up-regulation of MMSET at the protein level and its involvement in the pathogenesis of t(4;14) myeloma is still elusive. Moreover, about 30% of MM tumours with the t(4;14) translocation are reported to lack expression of FGFR3 due to the loss of der(14). Interestingly, the poor prognosis associated with the t(4;14) translocation in such patients lacking FGFR3 expression remains unchanged. These findings suggest that MMSET, if up-regulated at the protein level may be involved in the pathogenesis of t(4;14) myeloma and be a target for therapeutic manipulation. To assess the involvement of MMSET in the pathogenesis of t(4;14) MM we initially evaluated the expression of MMSET variants in a panel of human MM cell lines with and without the t(4;14) translocation by western blotting. Several isoforms corresponding to the expected molecular weight of MMSET II, MB4-2II, MB4-3II and REIIBP isoforms were expressed in MM cells, the REIIBP being exclusively up-regulated in t(4;14)-positive cell lines. In an attempt to determine the biological function of each MMSET isoform, western blotting was performed on nuclear and cytosol fractions isolated from t(4;14)-positive cell lines. It was found that MMSET II, MB4-2II and MB4-3II localise to the nucleus and not in the cytoplasm, but in contrast, REIIBP is found in both cellular fractions. To further determine the involvement of MMSET in the t(4;14) pathogenesis, MMSET expression was knocked down using siRNAs in t(4;14)-positive and t(4;14)-negative MM cell lines and its effect on cell proliferation, cell cycle and apoptosis was assessed by MTT, propidium iodide and annexin-V staining, respectively. It was found that the knockdown of MMSET expression significantly impairs cell proliferation (p<0.05, two-way ANOVA) and led to a reduction of t(4;14)-positive cells in the S and G2/M phases of the cell cycle compared to t(4;14)-negative cells. In addition, the knockdown of MMSET expression induced apoptosis in t(4;14)-positive cells when compared with t(4;14)-negative cells. Lastly, in order to determine the targets of MMSET in cells carrying the t(4;14) translocation, expression array analysis on cells in which MMSET was knocked down by siRNAs was performed. It was found that several key genes involved in cell cycle control are deregulated by the knockdown of MMSET expression. Our data suggest that MMSET up-regulation may be playing a critical role in the oncogenic behaviour of MM cells carrying the t(4;14) translocation and validates MMSET as a therapeutic target in t(4;14) MM.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 112-112
Author(s):  
James J. Driscoll ◽  
Dheeraj Pelluru ◽  
Rao Prabhala ◽  
Konstantinos Lefkimmiatis ◽  
Mariateresa Fulciniti ◽  
...  

Abstract The tumor suppressor protein p53 has a critical role in malignant transformation through its critical functions in the regulation of cell proliferation, DNA repair, and apoptosis. The level and activity of the p53 tumor suppressor protein is regulated by post-translational modifications such as phosphorylation and ubiquitination. To address the role of p53 in the pathogenesis of Multiple Myeloma (MM), a number of patient-derived MM cell lines were probed using a p53-specific antibody and immunoblotting indicated a significantly elevated level of the p53 protein in the lysate of a vast majority of cell lines relative to that of normal CD138+ plasma cells. Since p53 is regulated by a number of post-translational modifications, the MM cell line RPMI-8226 was then treated with g-radiation (5 Gy), total lysate prepared and probed with a p53 monoclonal antibody As early as 30 minutes following treatment with radiation, a dramatic induction in the steady-state levels of the p53 protein and, in addition, a new higher molecular weight (∼68kDa) immunoreactive form of p53 was observed. The 68 kDa form of p53 was immunoprecipitable from MM total cell lysates with an antibody to the small-ubiquitin-like modifier (Sumo-1) but importantly, was not immunoprecipitated by an antibody generated to ubiquitin. Sumo-1 is covalently conjugated to target proteins through a conjugating enzyme, Ubc9, and a substrate ligase, PIAS1. Both Ubc9 and PIAS1 were rapidly induced at the protein level upon treatment of MM cells with g-radiation. Sumoylation of p53 was detected following treatment of MM cells with a number of genotoxic stressors in addition to g-irradiation, such as etoposide, doxorubicin, methylethylsulfonate and Ni++ and was detected using cell lysate from a number of MM cell lines. MM cells were transformed with a plasmid that expressed a dominant negative mutant form of UBC9 that abolished sumoylation of p53. Transfectants displayed increased sensitivity to g-radiation. A second plasmid that over expressed a mutant form of p53 that had mutated attachment site for covalent linkage of Sumo-1 (p53-K386R) was transfected into MM cells. These cells displayed a greater proliferative capacity relative to mock or wild-type p53 transfected cells. We then examined CD138+ plasma cells that had been immunoaffinity purified from MM patient bone marrow samples. Similar to the MM cell lines, the steady-state level of p53 in MM patient samples was significantly elevated relative to that of normal CD138+ cells. Importantly, the sumoylated form of p53 was also detected in the cell lysate prepared from MM patient samples (but not MGUS samples). Our results indicate that p53 is rapidly sumoylated upon exposure of MM cells to genotoxic stressors. Importantly, the sumoylated form of p53 was readily detected in the purified plasma cells of MM patients and led to increased cell proliferation. The results indicate a critical role for the sumoylation pathway in the DNA damage response, the proliferative and apoptotic functions of p53 and the pathogenesis of MM.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5741
Author(s):  
Federica Mannino ◽  
Giovanni Pallio ◽  
Roberta Corsaro ◽  
Letteria Minutoli ◽  
Domenica Altavilla ◽  
...  

Cannabinoid receptors, which are widely distributed in the body, have been considered as possible pharmacological targets for the management of several tumors. Cannabinoid type 2 receptors (CB2Rs) belong to the G protein-coupled receptor family and are mainly expressed in hematopoietic and immune cells, such as B-cells, T-cells, and macrophages; thus, CB2R activation might be useful for treating cancers affecting plasma cells, such as multiple myeloma (MM). Previous studies have shown that CB2R stimulation may have anti-proliferative effects; therefore, the purpose of the present study was to explore the antitumor effect of beta-caryophyllene (BCP), a CB2R agonist, in an in vitro model of MM. Dexamethasone-resistant (MM.1R) and sensitive (MM.1S) human multiple myeloma cell lines were used in this study. Cells were treated with different concentrations of BCP for 24 h, and a group of cells was pre-incubated with AM630, a specific CB2R antagonist. BCP treatment reduced cell proliferation through CB2R stimulation; notably, BCP considerably increased the pro-apoptotic protein Bax and decreased the anti-apoptotic molecule Bcl-2. Furthermore, an increase in caspase 3 protein levels was detected following BCP incubation, thus demonstrating its anti-proliferative effect through apoptosis activation. In addition, BCP regulated AKT, Wnt1, and beta-catenin expression, showing that CB2R stimulation may decrease cancer cell proliferation by modulating Wnt/β-catenin signaling. These effects were counteracted by AM630 co-incubation, thus confirming that BCP’s mechanism of action is mainly related to CB2R modulation. A decrease in β-catenin regulated the impaired cell cycle and especially promoted cyclin D1 and CDK 4/6 reduction. Taken together, these data revealed that BCP might have significant and effective anti-cancer and anti-proliferative effects in MM cells by activating apoptosis, modulating different molecular pathways, and downregulating the cell cycle.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Liu ◽  
Hongmiao Ren ◽  
Jihao Ren ◽  
Tuanfang Yin ◽  
Bing Hu ◽  
...  

Cholesteatoma is a benign keratinizing and hyper proliferative squamous epithelial lesion of the temporal bone. Epidermal growth factor (EGF) is one of the most important cytokines which has been shown to play a critical role in cholesteatoma. In this investigation, we studied the effects of EGF on the proliferation of keratinocytes and EGF-mediated signaling pathways underlying the pathogenesis of cholesteatoma. We examined the expressions of phosphorylated EGF receptor (p-EGFR), phosphorylated Akt (p-Akt), cyclinD1, and proliferating cell nuclear antigen (PCNA) in 40 cholesteatoma samples and 20 samples of normal external auditory canal (EAC) epithelium by immunohistochemical method. Furthermore,in vitrostudies were performed to investigate EGF-induced downstream signaling pathways in primary external auditory canal keratinocytes (EACKs). The expressions of p-EGFR, p-Akt, cyclinD1, and PCNA in cholesteatoma epithelium were significantly increased when compared with those of control subjects. We also demonstrated that EGF led to the activation of the EGFR/PI3K/Akt/cyclinD1 signaling pathway, which played a critical role in EGF-induced cell proliferation and cell cycle progression of EACKs. Both EGFR inhibitor AG1478 and PI3K inhibitor wortmannin inhibited the EGF-induced EGFR/PI3K/Akt/cyclinD1 signaling pathway concomitantly with inhibition of cell proliferation and cell cycle progression of EACKs. Taken together, our data suggest that the EGFR/PI3K/Akt/cyclinD1 signaling pathway is active in cholesteatoma and may play a crucial role in cholesteatoma epithelial hyper-proliferation. This study will facilitate the development of potential therapeutic targets for intratympanic drug therapy for cholesteatoma.


2018 ◽  
Vol 14 (6) ◽  
pp. 1333-1339 ◽  
Author(s):  
Man Yang ◽  
Lingxiu Zhang ◽  
Xiufeng Wang ◽  
Yanjun Zhou ◽  
Sun Wu

Blood ◽  
1991 ◽  
Vol 78 (1) ◽  
pp. 180-191 ◽  
Author(s):  
R Greil ◽  
B Fasching ◽  
P Loidl ◽  
H Huber

Abstract The c-myc gene plays a pivotal role in mediating the competence state for cell cycle transversion. This biologic role is in contradiction to reports of elevated expression of the gene in multiple myeloma, a tumor with restricted self-renewal capacity. To more clearly define the role of this gene in plasma cells of myeloma patients, c-myc messenger RNA (mRNA) and/or oncoprotein expression were semiquantitatively analyzed on the single cell level in 19 cases of multiple myeloma, among them 1 biclonal case and 1 case with coexistent chronic lymphocytic leukemia (CLL). Performing anti-sense/mRNA in situ hybridization, mature c-myc gene transcripts were detected in 92% (12 of 13) of cases and could definitely be attributed to the plasma cells by our study. The number of Ki 67-positive plasma cells actively passing the cell cycle was less than 1% and independent of c-myc gene expression. However, because the presence of the 152-c-MYC epitope was correlated to extent of marrow plasmacytosis (r = .64; P = .043) and content of plasmablasts (P = .09), the c-myc gene might serve a function different from proliferative activity, but also associated with tumor cell mass. In CLL cells (21 of 22 cases) and their benign counterparts, ie, bone marrow and peripheral blood lymphocytes, the anti-sense/c-myc mRNA hybridization signals remained below the threshold considered as cutpoint between negative and positive. The low amounts of c-myc transcripts were correlated to neither stage of disease (P = .52) nor lymphocyte counts (P = .24). Because the numbers of peripheral blood lymphoma cells were independent of tumor mass and of c-myc gene transcripts expressed, peripheral blood lymphocytosis might more likely reflect homing processes than proliferative activity in CLL.


2014 ◽  
Vol 84 (5) ◽  
pp. 578-584 ◽  
Author(s):  
Hongjian Yang ◽  
Xiangming He ◽  
Yabing Zheng ◽  
Weiliang Feng ◽  
Xianghou Xia ◽  
...  

2021 ◽  
Vol 02 ◽  
Author(s):  
Mohammad Uzair ◽  
Faisal Rashid ◽  
Hamid Saeed Shah ◽  
Jamshed Iqbal

Background: Plants are a vital source of natural drugs as the traditional use of plants as therapeutic agents for a variety of ailments has been traced back to thousands of years. The utilization of Heliotropium calcareum has been evident since ancient times for treating various disease states like inflammation associated with gout and rheumatism, poisonous bites, and other skin disorders. The current research work was carried out to determine the phytochemistry and biological activities of the crude methanolic extract obtained through maceration from the aerial parts of Heliotropium calcareum. Methods: The plant was collected from district Bhakkar, Punjab, Pakistan. Maximum phenolic (74.5 µg GAE/mg) and flavonoid content (58.99 µg QE/mg) were observed in ethyl acetate fraction. Significant antioxidant potential was observed in ethyl acetate fraction with the highest free radical hunting activity of 92.6 ± 6.7 µM. Results: Cytotoxicity assay using MTT dye was performed where non-polar (n-hexane) and polar (ethyl acetate) fractions displayed excellent cytotoxicity against HeLa cells (IC50 = 79.95 ± 3.718 & 164 ± 4 µg/mL respectively). Furthermore, the above fractions showed momentous results in cell cycle analysis and promising proapoptotic effect against cervical (HeLa) cancer cell lines. An n-hexane and ethyl acetate fraction were selected for cell cycle analysis to determine the quantitative measurement of the degree of apoptosis. According to the results given below in the figure, the cervical (HeLa) cancer cells were treated with n-hexane and ethyl acetate fractions at various concentrations. An increase in the cell population at G0/G1 phase and a decrease in the S-phase population concerning untreated cells suggested the G0/G1 phase arrest in n-hexane and ethyl acetate fractions treated HeLa cells. Conclusion: Overall, , n-hexane and ethyl acetate fractions were found to be the most promising and active elements of H. calcareum and may be utilized to explore their cytotoxic effects further in the animal model.


Sign in / Sign up

Export Citation Format

Share Document