Functional Analysis of the GATA2 Promoter Shows That Mutations of GATA2 Impair Its Own Transcriptional Regulation

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1233-1233 ◽  
Author(s):  
Xabier Cortes-Lavaud ◽  
Miren Maicas ◽  
Iria Vazquez ◽  
Carmen Vicente ◽  
Leire Urquiza ◽  
...  

Abstract Abstract 1233 GATA2 encodes a transcription factor with essential functions in hematopoiesis. Somatic mutations of GATA2 have been reported in patients with chronic myeloid leukemia (CML) with blast crisis, and in bi-CEBPA-positive acute myeloid leukemia (AML); moreover, our group and others have shown that overexpression of this gene is a recurrent event associated with poor prognosis in AML. Several recent studies report mutations in the GATA2 gene in three different familial syndromes characterized by predisposition to myelodysplastic syndrome (MDS) and AML. Despite some differences, these mutations are very similar, and in some cases identical. This implies that individual mutations, although located in similar regions, may differentially affect GATA2 function. Therefore, additional research is required to explain why similar mutations lead to different syndromes (Hyde and Liu, 2011). On the other hand, it has been extensively studied in murine models that GATA2 activates its own transcription by binding to regions located at −2.8 and −1.8 kb from the transcription start site (TSS). We hypothesized that these reported GATA2 mutations could alter the GATA2 autoregulatory loop, affecting the transcription of GATA2. With this aim, we first aligned the murine and human GATA2 promoters in search for homologous GATA2 binding sites. Regions containing the cis-regulatory elements located at −2.8 and −1.8 kb from IS exon TSS in the murine promoter were highly homologous to two regions in the human promoter, with two putative GATA2 binding sites located at −3.4 and −2.4 kb from IS TSS, respectively. ChIP-qPCR assays showed that GATA2 binds to these sites in the human GATA2 promoter. To assess the ability of both wild-type and GATA2 mutations to regulate its own transcription, we transfected these GATA2 gene variants along with different GATA2 promoter constructs into HEK293T cells, and performed luciferase reporter assays. Wild-type GATA2 activated its transcription through the −2.4 kb site; however, it was not able to activate the full length promoter construct containing both the −3.4 and −2.4 sites. CEBPA binding sites near the −3.4 site could explain these results, since it has been reported that expression of GATA2 is transcriptionally repressed by CEBPA in a DNA binding-dependent manner. The T354M mutant activated GATA2 transcription in a similar manner than the GATA2 wild-type, raising the question about the complex function of T354M. On the contrary, del355T was totally incapable of sustain any activation of GATA2. Finally, the L359V mutation, present in 10% of CML cases with blast crisis, was able to activate the GATA2 promoter, even the full length promoter construct that contains both −3.4 and −2.4 sites, supporting that L359V is a gain-of-function mutation. In summary, GATA2 mutations had different effects on the GATA2 promoter that could affect the dose of GATA2. Expression of GATA2 is critical at various stages of hematopoiesis and since it in part determines the fate of distinct myeloid lineages, this could alter normal hematopoiesis. Moreover, as happened with GATA2, mutant GATA2 proteins could affect the expression of other targets of GATA2, as SCL, BMP4, PU.1, WT1 and others. Studies to further clarify these questions are in progress. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 309-318 ◽  
Author(s):  
Scott D. Langdon ◽  
Russel E. Kaufman

Abstract Normal expression of the human β-globin domain genes is dependent on at least three types of regulatory elements located within the β-globin domain: the locus control region (LCR), globin enhancer elements (3′β and 3′Aγ), and the individual globin gene promoter and upstream regions. It has been postulated that regulation occurs through physical interactions between factors bound to these elements, which are located at considerable distances from each other. To identify the elements required for promoter-enhancer interactions from a distance, we have investigated the expression of the wild-type, truncated, and mutated γ-globin promoters linked to the 5′HS2 enhancer. We show that in K562 cells, 5′HS2 increases activity approximately 20-fold from both a wild-type and truncated (-135 → +25) γ promoter and that truncation or site-directed mutagenesis of the tandem CCAAT boxes eliminated the enhancement by 5′HS2. Mutation of the γ-globin gene promoter GATA-1 binding sites did not decrease either promoter strength or enhancement of activity by 5′HS2. To determine if enhanced expression of γ-globin gene promoters carrying mutations associated with hereditary persistence of fetal hemoglobin (HPFH) was due to greater interactions with enhancers, we linked these HPFH γ-globin gene promoters to 5′HS2 and demonstrated a twofold to threefold higher expression than the corresponding wild-type promoter plus enhancer in MEL cells. Addition of the Aγ-globin gene 3′ enhancer to a plasmid containing the γ-globin gene promoter and 5′HS2 did not further enhance promoter strength. Furthermore, we have demonstrated that the previously identified core 5′HS2 enhancer (46-bp tandem AP-1/NF-E2 sites) increased expression only when located 5′, but not 3′, to the γ-globin-luciferase reporter gene, suggesting that its enhancer effect is not by DNA looping. Our results suggest that CCAAT boxes, but not GATA or CACCC binding sites, are required for interaction between the γ-globin promoter and the LCR/5′HS2 and that regulatory elements in addition to the core enhancer may be required for the enhancer to act from a distance.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 309-318
Author(s):  
Scott D. Langdon ◽  
Russel E. Kaufman

Normal expression of the human β-globin domain genes is dependent on at least three types of regulatory elements located within the β-globin domain: the locus control region (LCR), globin enhancer elements (3′β and 3′Aγ), and the individual globin gene promoter and upstream regions. It has been postulated that regulation occurs through physical interactions between factors bound to these elements, which are located at considerable distances from each other. To identify the elements required for promoter-enhancer interactions from a distance, we have investigated the expression of the wild-type, truncated, and mutated γ-globin promoters linked to the 5′HS2 enhancer. We show that in K562 cells, 5′HS2 increases activity approximately 20-fold from both a wild-type and truncated (-135 → +25) γ promoter and that truncation or site-directed mutagenesis of the tandem CCAAT boxes eliminated the enhancement by 5′HS2. Mutation of the γ-globin gene promoter GATA-1 binding sites did not decrease either promoter strength or enhancement of activity by 5′HS2. To determine if enhanced expression of γ-globin gene promoters carrying mutations associated with hereditary persistence of fetal hemoglobin (HPFH) was due to greater interactions with enhancers, we linked these HPFH γ-globin gene promoters to 5′HS2 and demonstrated a twofold to threefold higher expression than the corresponding wild-type promoter plus enhancer in MEL cells. Addition of the Aγ-globin gene 3′ enhancer to a plasmid containing the γ-globin gene promoter and 5′HS2 did not further enhance promoter strength. Furthermore, we have demonstrated that the previously identified core 5′HS2 enhancer (46-bp tandem AP-1/NF-E2 sites) increased expression only when located 5′, but not 3′, to the γ-globin-luciferase reporter gene, suggesting that its enhancer effect is not by DNA looping. Our results suggest that CCAAT boxes, but not GATA or CACCC binding sites, are required for interaction between the γ-globin promoter and the LCR/5′HS2 and that regulatory elements in addition to the core enhancer may be required for the enhancer to act from a distance.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Puli Chandramouli Reddy ◽  
Akhila Gungi ◽  
Suyog Ubhe ◽  
Sanjeev Galande

Abstract Background Axis patterning during development is accompanied by large-scale gene expression changes. These are brought about by changes in the histone modifications leading to dynamic alterations in chromatin architecture. The cis regulatory DNA elements also play an important role towards modulating gene expression in a context-dependent manner. Hydra belongs to the phylum Cnidaria where the first asymmetry in the body plan was observed and the oral-aboral axis originated. Wnt signaling has been shown to determine the head organizer function in the basal metazoan Hydra. Results To gain insights into the evolution of cis regulatory elements and associated chromatin signatures, we ectopically activated the Wnt signaling pathway in Hydra and monitored the genome-wide alterations in key histone modifications. Motif analysis of putative intergenic enhancer elements from Hydra revealed the conservation of bilaterian cis regulatory elements that play critical roles in development. Differentially regulated enhancer elements were identified upon ectopic activation of Wnt signaling and found to regulate many head organizer specific genes. Enhancer activity of many of the identified cis regulatory elements was confirmed by luciferase reporter assay. Quantitative chromatin immunoprecipitation analysis upon activation of Wnt signaling further confirmed the enrichment of H3K27ac on the enhancer elements of Hv_Wnt5a, Hv_Wnt11 and head organizer genes Hv_Bra1, CnGsc and Hv_Pitx1. Additionally, perturbation of the putative H3K27me3 eraser activity using a specific inhibitor affected the ectopic activation of Wnt signaling indicating the importance of the dynamic changes in the H3K27 modifications towards regulation of the genes involved in the head organizer activity. Conclusions The activation-associated histone marks H3K4me3, H3K27ac and H3K9ac mark chromatin in a similar manner as seen in bilaterians. We identified intergenic cis regulatory elements which harbor sites for key transcription factors involved in developmental processes. Differentially regulated enhancers exhibited motifs for many zinc-finger, T-box and ETS related TFs whose homologs have a head specific expression in Hydra and could be a part of the pioneer TF network in the patterning of the head. The ability to differentially modify the H3K27 residue is critical for the patterning of Hydra axis revealing a dynamic acetylation/methylation switch to regulate gene expression and chromatin architecture.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1801-1801
Author(s):  
Anagha Borwankar ◽  
Alessandro Pastore ◽  
Aniruddha Deshpande ◽  
Yvonne Zimmermann ◽  
Christian Buske ◽  
...  

Abstract Mutations, activation or overexpression of cyclin D1 are common features of several human cancers including mantle cell lymphoma (MCL) which bears the characteristic t(11;14) translocation juxtaposing the cyclin D1 gene downstream of the immunoglobulin heavy chain enhancer. The loss of the 3’UTR of this gene has been reported in a majority of MCL patients as well as in cell lines. In order to assess the impact of the 3’UTR on cyclin D1 expression levels, we used YFP tagged cyclin D1 reporter plasmids to quantify cyclin D1 expression in cell lines with different mutations of the 3’UTR. Interestingly, protein expression was significantly higher upon deletion of the cyclin D1 3’UTR compared to the full-length cyclin D1 gene as assessed by flow cytometry (2.1 fold; n=3, P < 0.05). Applying a more sensitive dual-luciferase reporter assay where a constitutively expressed luciferase gene was fused to the cyclin D1 3’UTR, the normalized firefly luciferase activity was reduced significantly to 23% as compared to luciferase only (the empty vactor). We then introduced 3’UTR mutations observed in MCL patients (insertion of adenosine between nucleotides 2308 and 2309 and a deletion of the tri-nucleotide sequence TCA from 2309–2311 of the full length cyclin D1-YFP reporter cDNA), which resulted in a significant increase of cyclin D1 expression (1.3 fold both in Ins308 and Δ309-311) compared to full length cyclin D1, (P< 0.05) showing that these mutations contribute to cyclinD1 overexpression in these patients. Subsequently, the 3’UTR was scanned for elements potentially regulating cyclin D1 expression, and putative microRNA binding sites were identified using the TargetScan and PicTar microRNA target prediction software. The most interesting candidate microRNAs include the miR-15/16 family and the miR-17–92 cluster, both of which have been shown to be involved in lymphoid malignancies and regulate cell cycle progression. In order to confirm whether the cyclin D1 3’UTR is a direct target of these microRNAs, we cloned the cyclin D1 3’UTR target region containing putative miR-15/16 or miR-17/20a binding sites and transfected these reporter constructs into HeLa cells. Upon introduction of oligonucleotide mimics of the miR15/16 microRNAs or a plasmid expressing microRNAs of the miR-17 cluster, the normalized luciferase activity of the respective luciferase reporters was reduced significantly to 41% (miR-15), 33% (miR-16) and 79% (miR-17/20a), respectively. Moreover, introduction of mutations in the seed sequences of the putative microRNA recognition sites rendered these constructs insensitive to inhibition by these microRNAs, confirming the specificity of the microRNA::target interaction. These data confirm that the binding of these microRNAs play an important role in the repression of cyclin D1 mediated by the 3’UTR and mutation or deletion result in cyclin D1 overexpression in MCL as well as other human tumors.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2393-2393 ◽  
Author(s):  
Rabindranath Bera ◽  
Der-Cherng Liang ◽  
Ming-Chun Chiu ◽  
Ying-Jung Huang ◽  
Sung-Tzu Liang ◽  
...  

Abstract Abstract 2393 Somatic mutations of ASXL1 gene have been described in patients with myeloid malignancies and were associated with inferior outcomes. ASXL1 mutations have also been detected in myeloid blast crisis of chronic myeloid leukemia (CML) patients. The mechanisms of acute myeloid leukemia (AML) transformation and functional role of ASXL1 mutations in the leukemogenesis remain to be determined. Recently, we identified PHD domain deletion mutations (R693X and L885X) in patients with CML in myeloid blast crisis and/or AML with minimal differentiation (M0). In the present study, we aimed to investigate the role of PHD domain deletion mutations in the pathogenesis of AML transformation. The K562 cells carrying Philadelphia chromosome, serves as a model to study the molecular mechanisms associated with leukemogenesis. Our result showed that R693X/L885X mutations inhibited PMA-treated megakaryocytic differentiation with the change of physiological characteristic features and suppressed the induction of CD61, a specific cell surface marker of megakaryocytes. We also found that FOSB, a member of Fos family of AP-1 transcription factors was down-regulated in K562 cells expressing R693X and L885X compared to wild-type ASXL1 during PMA-mediated megakaryocytic differentiation. Examination of intracellular signaling pathways showed that the mutant ASXL1 protein prevented PMA-induced megakaryocytic differentiation through the inactivation of ERK, AKT and STAT5 which are required for differentiation. Further, ASXL1 depletion by shRNA in K562 cells led to enhanced cell proliferation, increased colony formation and impaired PMA-mediated differentiation. Previous studies in Drosophila had revealed that Asxl forms the protein complexes of both Trithorax and Polycomb groups that are required for maintaining chromatin in both activated and repressed transcriptional states. By using Western blot analysis, we demonstrated that PHD domain deletion mutations of ASXL1 significantly suppressed the transcriptionally repressive mark H3K27 trimethylation, however no effect on methylated H3K4 (H3K4me2 and H3K4me3), an active histone mark in K562 cells. Co-immunoprecipitation analysis revealed that wild-type, but not PHD domain deletion mutations of ASXL1 interact with EZH2, a member of the polycomb repressive complex 2 (PRC2). Importantly, PHD deletion mutations or downregulation of ASXL1 resulted in the suppression of EZH2 in K562 cells. Our study demonstrated that PHD deletion mutations of ASXL1 resulted in a loss-of-function which exhibited direct effects on the proliferation and differentiation and also proposed a specific role for ASXL1 in epigenetic regulation of gene expression in K562 cells. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 ◽  
Author(s):  
Minran Zhou ◽  
Xiaolin Yin ◽  
Lixin Zheng ◽  
Yue Fu ◽  
Yue Wang ◽  
...  

BackgroundChronic myeloid leukemia (CML) is a malignant clonal proliferative disease. Once it progresses into the phase of blast crisis (CML-BP), the curative effect is poor, and the fatality rate is extremely high. Therefore, it is urgent to explore the molecular mechanisms of blast crisis and identify new therapeutic targets.MethodsThe expression levels of miR-181d, RBP2 and NF-κB p65 were assessed in 42 newly diagnosed CML-CP patients and 15 CML-BP patients. Quantitative real-time PCR, Western blots, and cell proliferation assay were used to characterize the changes induced by overexpression or inhibition of miR-181d, RBP2 or p65. Luciferase reporter assay and ChIP assay was conducted to establish functional association between miR-181d, RBP2 and p65. Inhibition of miR-181d expression and its consequences in tumor growth was demonstrated in vivo models.ResultsWe found that miR-181d was overexpressed in CML-BP, which promoted leukemia cell proliferation. Histone demethylase RBP2 was identified as a direct target of miR-181d which downregulated RBP2 expression. Moreover, RBP2 inhibited transcriptional expression of NF-κB subunit, p65 by binding to its promoter and demethylating the tri/dimethylated H3K4 region in the p65 promoter locus. In turn, p65 directly bound to miR-181d promoter and upregulated its expression. Therefore, RBP2 inhibition resulting from miR-181d overexpression led to p65 upregulation which further forwarded miR-181d expression. This miR-181d/RBP2/p65 feedback regulation caused sustained NF-κB activation, which contributed to the development of CML-BP.ConclusionsTaken together, the miR-181d/RBP2/p65 feedback regulation promoted CML-BP and miR-181d may serve as a potential therapeutic target of CML-BP.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1154-1154
Author(s):  
Fan Dong ◽  
Yaling Qiu ◽  
Alan D. Friedman ◽  
Qingquan Liu

Abstract Severe congenital neutropenia (SCN) is characterized by early onset of bacterial infections and maturation arrest of myeloid cells at early stages of differentiation in the bone marrow. Point mutations in ELA2 encoding neutrophil elastase (NE) have been identified in 60% to 80% of patients with SCN. SCN patients are predisposed to acute myeloid leukemia (AML), which occurs in approximately 15 % of cases. With rare exceptions, leukemic cells from these patients carry mutations in CSF3R encoding the G-CSF receptor, leading to C-terminal truncation of the receptor. Notably, the nonsense mutations in CSF3R are present only in SCN/AML patients, particularly those with ELA2 mutations, but not in other types of neutropenias and de novo AML. The mechanism for the exclusive presence of the nonsense CSF3R mutations in SCN/AML is unknown. In myeloid 32D cells transfected with the wild type (WT) G-CSF receptor (32D/WT), G-CSF treatment induced the expression of NE. However, NE expression was not upregulated by G-CSF in 32D cells expressing the truncated G-CSF receptor d715, derived from an SCN patient. It has been shown that myeloid cells from patients with SCN/AML express both the wild type and the truncated G-CSF receptors. Indeed, the d715 mutant acted in a dominant negative manner to suppress NE upregulation by the WT G-CSF receptor. In luciferase reporter assays, the WT G-CSF receptor, but not the d715 mutant, activated a 1.8-kb fragment of the mouse Ela2 promoter. Significantly, forced expression of an SCN-associated NE mutant G185R caused premature apoptosis of differentiating 32D/WT cells in response to G-CSF with no significant effect on IL-3-stimulated survival. To address whether the d715 mutant may abolish the proapoptotic effect of the G185R mutant via suppressing its expression, we transfected 32D/WT and 32D/d715 cells with an expression construct in which the expression of the G185R mutant was driven by the 1.8-kb fragment of the Ela2 promoter. G-CSF treatment induced the expression of the G185R mutant and subsequent apoptosis in 32D/WT cells. In 32D/d715 cells, however, the expression of the G185R mutant was not induced by G-CSF and accordingly its proapoptotic activity was not evident. We propose that acquisition of the nonsense mutations in CSF3R may represent a mechanism utilized by the myeloid cells harboring the ELA2 mutations to evade the proapoptotic effect of the NE mutants. However, expression of the truncated G-CSF receptors has other biological consequences: they transduce strong proliferative signals but are defective in inducing granulocytic differentiation, which may initiate the leukemogenic process.


2005 ◽  
Vol 187 (17) ◽  
pp. 6213-6222 ◽  
Author(s):  
Preeti M. Tendolkar ◽  
Arto S. Baghdayan ◽  
Nathan Shankar

ABSTRACT Enterococci have emerged as one of the leading causes of nosocomial bloodstream, surgical site, and urinary tract infections. More recently, enterococci have been associated with biofilms, which are bacterial communities attached to a surface and encased in an extracellular polymeric matrix. The enterococcal cell surface-associated protein, Esp, enhances biofilm formation by Enterococcus faecalis in a glucose-dependent manner. Mature Esp consists of a nonrepeat N-terminal domain and a central region made up of two types of tandem repeats followed by a C-terminal membrane-spanning and anchor domain. This study was undertaken to localize the specific domain(s) of Esp that plays a role in Esp-mediated biofilm enhancement. To achieve this objective, we constructed in-frame deletion mutants expressing truncated forms of Esp in an isogenic background. By comparing strains expressing the mutant forms of Esp to those expressing wild-type Esp, we found that the strain expressing Esp lacking the N-terminal domain formed biofilms that were quantitatively less in biovolume than the strain expressing wild-type Esp. Furthermore, an E. faecalis strain expressing only the N-terminal domain of Esp fused to a heterologous protein anchor formed biofilms that were quantitatively similar to those formed by a strain expressing full-length Esp. This suggested that the minimal region contributing to Esp-mediated biofilm enhancement in E. faecalis was confined to the nonrepeat N-terminal domain. Expression of full-length E. faecalis Esp in heterologous host systems of esp-deficient Lactococcus lactis and Enterococcus faecium did not enhance biofilm formation as was observed for E. faecalis. These results suggest that Esp may require interaction with an additional E. faecalis-specific factor(s) to result in biofilm enhancement.


2007 ◽  
Vol 292 (5) ◽  
pp. G1221-G1227 ◽  
Author(s):  
Wensheng Chen ◽  
Shi-Ying Cai ◽  
Shuhua Xu ◽  
Lee A. Denson ◽  
Carol J. Soroka ◽  
...  

Multidrug resistance-associated protein MRP3/Mrp3 (ABCC3) is upregulated in cholestasis, an adaptive response that may protect the liver from accumulation of toxic compounds, such as bile salts and bilirubin conjugates. However, the mechanism of this upregulation is poorly understood. We and others have previously reported that fetoprotein transcription factor/liver receptor homolog-1 is an activator of MRP3/Mrp3 expression. In searching for additional regulatory elements in the human MRP3 promoter, we have now identified nuclear receptor retinoic X receptor-α:retinoic acid receptor-α (RXRα:RARα) as a repressor of MRP3 activation by transcription factor Sp1. A luciferase reporter assay demonstrated that cotransfection of transcription factor Sp1 stimulates the MRP3 promoter activity and that additions of RXRα:RARα abrogated this activation in a dose-dependent manner. Site mutations and gel shift assays have identified a Sp1 binding GC box motif at −113 to −108 nts upstream from the MRP3 translation start site, where RXRα:RARα specifically reduced Sp1 binding to this site. Mutation of the GC box also reduced MRP3 promoter activity. The functional role of RXRα:RARα as a repressor of MRP3 expression was further confirmed by RARα small-interfering RNA knockdown in HepG2 cells, which upregulated endogenous MRP3 expression. In summary, our results indicate that activator Sp1 and repressor RXRα:RARα act in concert to regulate MRP3 expression. Since RXRα:RARα expression is diminished by cholestatic liver injury, loss of RXRα:RARα may lead to upregulation of MRP3/Mrp3 expression in these disorders.


2008 ◽  
Vol 389 (4) ◽  
pp. 383-393 ◽  
Author(s):  
Maciej Pietrzak ◽  
Monika Puzianowska-Kuznicka

Abstract p53 regulates transcription of one anti-apoptotic and four pro-apoptotic members of the BCL-2 family, but nothing is known about the regulation of MCL-1, another anti-apoptotic member of this family, by p53. Confocal microscopic analysis of COS1, HEK 293 and HeLa cells transfected with a p53 expression plasmid demonstrated a decrease in the signal of endogenous MCL-1 compared to neighboring non-transfected cells. Transcription regulation assays showed that the 1826 bp human MCL-1 promoter fragment was repressed up to 30-fold by wild-type p53 in a dose-dependent manner. As shown by electrophoretic mobility shift assays, Sp1 binding to the sites located in the -295 to +16 MCL-1 promoter fragment was decreased in the presence of p53. However, the MCL-1 promoter devoid of all Sp1 binding sites was still repressed by p53, albeit 2-fold weaker than the wild-type promoter. Overexpression of Sp1 reduced p53-dependent repression of the MCL-1 promoter only up to 2.2-fold. Transcription regulation assays performed with MCL-1 promoter deletion mutants showed that most of the p53 inhibitory effect was mediated by the -41 to +16 bp promoter fragment containing binding sites only for TATA-binding protein and other basal transcription factors. We propose a novel, promoter-based mechanism by which p53 down-regulates expression of the anti-apoptotic MCL-1 protein.


Sign in / Sign up

Export Citation Format

Share Document