SGI-110, a Novel Hypomethylating Agent, Induces the WNT Inhibitor Secreted Frizzled Related Protein-2 (SFRP2), and Down Regulates β-Catenin in Acute Myeloid Leukemia (AML) Cells

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1290-1290
Author(s):  
Michelle Golding ◽  
Pragya Srivastava ◽  
Golda Collamat ◽  
Smitha R James ◽  
Adam R. Karpf ◽  
...  

Abstract Abstract 1290 Introduction: SGI-110 (Astex Pharmaceuticals, Inc.) is a dinucleotide hypomethylating agent whose active metabolite is decitabine (DAC). This drug demonstrates superior pharmacokinetics relative to the parent drug as a result of resistance to modification by cytidine deaminase, and is being investigated in myeloid malignancy in the phase I/II setting. We and others have demonstrated that WNT inhibitory genes including SFRP2 are epigenetically silenced in AML and that exposure to DNA methyltransferase inhibitors such as 5-Azacitidine (AZA) and DAC can re-express these genes and down-regulate β-catenin signaling in AML cell lines. We hypothesized that treatment with SGI-110 would have a similar effect upon the epigenetically silenced WNT inhibitor SFRP2 and further would down-regulate β-catenin signaling in AML cells in vitro. Methods: The AML cell lines HL60 and U937 were cultured in vitro using standard techniques and treated with phosphate buffered saline, 0.1, 1 or 5 μM SGI-110, 2μM AZA or 0.5μM DAC. Results presented are pooled data from a minimum of three biological replicates. Samples were harvested on day 5 and viable cells, DNA, RNA and protein obtained. β-catenin levels and cellular localization were quantified using imaging flow cytometry (ImageStream), DNA was extracted and bisulfite converted for analysis of gene specific and global DNA methylation by pyrosequencing (LINE-1, SFRP2), RNA was converted to cDNA for analysis by RT-PCR, and protein was obtained to confirm ImageStream results by Western blot. Nuclear translocation of β-catenin, indicative of its signaling activity, was assessed in individual cells by ImageStream using a similarity score: a log-transformed Pearson's correlation coefficient between the digitized images of immunostained β-catenin and a nuclear stain (DAPI). Shifts in the population (n=5,000) distributions of this similarity score were assessed by a resolution metric (Fishers discriminant ratio, Rd). Results: Treatment of AML cell lines with 5μM SGI-110 was toxic, and in line with previous experiments in AML cell lines, above the IC90. Treatment at the lowest dose of SGI-110 had minimal effects upon viability, methylation, and mRNA and protein expression in both cell lines tested. Treatment with SGI-110 at the 1μM dose resulted in reductions in LINE-1 methylation in HL60 cells by 21% (from 82% to 61%), compared to 8% with AZA (to 74%) and 20% with DAC (to 62%). In U937 cells, LINE-1 methylation decreased by 40% (from 67% to 27%) after SGI-110 treatment compared to a 25% reduction with AZA (to 42%) and a 30% reduction with DAC (to 36%). SFRP2 methylation in HL60 and U937 decreased from 86 and 88% at baseline to 66 and 60% with SGI-110 at the 1μM dose, compared to 68% with AZA and to 61% with DAC. Expression of SFRP2 mRNA was observed following treatment with 1μM SGI-110 and with DAC, but was limited following AZA treatment. ImageStream analysis of total cellular β-catenin in HL-60 and U937 cells demonstrated 2.4-fold and 1.2-fold reductions in total β-catenin following 1μM SGI-110 treatment. These results were similar to those seen with DAC (1.8-fold and 1.3-fold in HL-60 and U937 cells respectively). AZA treatment appeared to have a greater effect on total β-catenin in U937 cells (1.3-fold reduction) than in HL-60 cells (0.84-fold reduction). Western blot confirmed reductions in β-catenin protein. We also observed decreased nuclear translocation of β-catenin after treatment of HL-60 and U937 cells with 1 μM SGI-110 (Rd = −0.58 and −0.21 respectively; the negative sign indicates a change in cellular distribution from the nucleus to the cytoplasm). Changes were comparable to those observed with DAC (Rd = −0.75 and −0.26 in HL-60 and U937 cells respectively). AZA treatment of U937 cells resulted in a shift in cellular distribution (Rd = −0.20) similar to that for DAC and SGI-110 but had no effect on β-catenin distribution in HL-60 cells (Rd= 0.00). Conclusions: SGI-110 is a novel DNMT inhibitor which demonstrates robust effects on LINE-1 methylation, SFRP2 mRNA expression, and β-catenin level and localization consistent with epigenetically mediated re-expression of the WNT inhibitor SFRP2. Both upregulated β-catenin signaling and SFRP2 methylation have been demonstrated to correlate with inferior survival in patients with myeloid malignancies. Re-expression of epigenetically silenced WNT inhibitory genes such as SFRP2 may abrogate β-catenin signaling in AML cells. Disclosures: Karpf: Astex Pharmaceuticals: Research Funding. Griffiths:Celgene: Honoraria; Astex Pharmaceuticals: Research Funding.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 879-879
Author(s):  
Shiva Bamezai ◽  
Naidu Vegi ◽  
Alex Pulikkottil Jose ◽  
Julia Müller ◽  
Ingrid Grummt ◽  
...  

Abstract During DNA replication and transcription, RNA:DNA hybrids are formed as part of three stranded nucleic acid structures known as R-loops. R-loops occur frequently in the genome at highly transcribed regions, ribosomal genes, mitochondria and intergenic regions, and are predominantly resolved by Ribonuclease (RNase) H family of enzymes. However, unscheduled and unresolved R-loops represent a potent source of DNA damage, especially in rapidly dividing cells such as cancer cells. It is imperative for cancer cells to prevent accumulation of unresolved R-loops in order to limit DNA damage. So far, the mechanism how leukemic cells prevent accumulation of R-loops is not well understood. In this study, we show that an RNase H-like protein, PIWIL4, is aberrantly and highly expressed in AML patients, prevents R-loop accumulation via its RNase H activity and thereby acts as important regulator of leukemic growth. In our initial analysis, we observed that the recombinant human PIWIL4 protein digested radiolabeled-RNA-containing R-loops in vitro, exhibiting an RNase H-like activity with increasing efficiency, in incremental concentrations and time durations. Moreover, immunoprecipitation of PIWIL4 followed by liquid chromatography mass spectrometry (LC/MS) in HEK cells showed that PIWIL4 was bound with multiple nuclear and nucleolar RNA processing factors that are associated with formation of R-loops. Published RNA-seq and microarray datasets revealed that, among all cancers, PIWIL4 was significantly highest expressed in myeloid leukemia. Quantitative real time PCR (qRT-PCR) of acute myeloid leukemia (AML) patients revealed that PIWIL4 showed an average of 21.6 ± 5.0-fold higher expression in AML patients (n=68; p<0.0001), compared to healthy CD34+ bone marrow (BM) and BM mononuclear cells (n=3). Western blot of AML patient samples and intracellular (IC) staining confirmed higher PIWIL4 protein expression levels in AML cells compared to cord blood CD34+ HSPCs. Piwil4 expression increased by 6-8 fold in murine BM healthy HPSCs within 48h after transduction with MLL-AF9, AML1-ETO9A and CDX2 oncogenes compared to empty vector (n=3, p<0.0001). Stable knockdown of PIWIL4 in AML cell lines and primary AML samples using shRNA, followed by IC staining and confocal microscopy using an antibody against R-loops (S9.6) revealed a marked increase in accumulation of R-loops within 72h post-transduction in PIWIL4 depleted cells, in contrast to healthy cord blood HSPCs which remained unaffected (n=3). PIWIL4 depleted AML cells exhibited an accumulation of DNA damage associated gH2AX foci, replication stress associated BrdU foci, higher levels of phosphorylated ATR (p-ATR), a marked increase in apoptosis and block in the G2M phase of the cell cycle. Depletion of PIWIL4 significantly impaired clonogenic potential of AML patient samples in vitro (avg. 4.9 ± 0.9-fold reduction, p<0.0001, n=3). In vivo, PIWIL4 depletion in cell lines delayed onset of leukemia (n=8, p<0.001) and in AML patient cells reduced leukemic engraftment in xenografts 12 weeks post-transplantation (avg. scr - 50.6±21% vs avg. shRNA-14.6±10, n=6). Of note, PIWIL4 depletion in cord blood CD34+ HSPCs had no impact on colony formation or differentiation in vitro. RNA-seq of PIWIL4 depleted THP-1 cell line followed by GSEA revealed a significant reduction in expression of ribosomal genes and increased expression of G2M checkpoint repair pathway (n=2, p<0.05, FDR<0.05). qRT-PCR of pre-rRNA (45S rRNA) showed a significant reduction in rRNA transcription in shRNA transduced cell lines (avg. 2.5 ± 0.3-fold reduction, n=3, p<0.01). Overexpression of PIWIL4 or RNase H1 in PIWIL4 depleted AML cell lines rescued R-loop and gH2AX signals, induced a decrease in p-ATR and gH2AX protein levels, and rescued the impact on apoptosis and growth phenotype in colony assays. RNA polymerase I inhibitor CX-5461, known to stabilize R-loop associated secondary structures, acted synergistically with PIWIL4 depletion and induced complete cell death of PIWIL4 depleted AML cells compared to scrambled control at IC50 concentrations. Thus, collectively, we could show for the first time that PIWIL4 is a functional RNase H like enzyme in AML cells, suppresses formation of R-loops, thereby preventing DNA damage and apoptosis of AML cells. Our data also suggest that impairing resolution of R-loops is a powerful therapeutic tool in AML. Disclosures Buske: Roche: Honoraria, Research Funding; Bayer: Research Funding; Janssen: Honoraria, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2646-2646
Author(s):  
Joseph M Brandwein ◽  
Asmaa Basonbul

Introduction: Many older patients with acute myeloid leukemia (AML) are ineligible for intensive chemotherapy due to frailty and co-morbidities; for such patients, existing treatments are often ineffective and new treatments are needed. Temozolomide (TMZ) is an alkylating agent that causes DNA methylation at O6 guanine, generating single strand break leading to apoptosis. However, the efficacy of TMZ depends on the DNA repair protein O6-methylguanine methyltransferase (MGMT), that maintains the genomic integrity by removing the O6-methyl group and restoring guanine nucleobase, thereby enhancing resistance to TMZ. Previous clinical trials in AML found that responses to TMZ correlated with low MGMT expression; however, even in those with low MGMT expression complete response rates were only in the 25% range. BCL-2, an anti-apoptotic protein, is overexpressed in AML cells. Direct inhibition by the selective BCL-2 inhibitor venetoclax (Venet) promotes apoptosis. This study evaluated the ability of Venet to enhance TMZ sensitivity in AML cells, including those with MGMT overexpression. Methods: KG1, MV4-11 and MOLM13 AML cell lines were studied, as well as bone marrow blast cells collected from AML patients. Western blot was used to measure MGMT and BCL-2 expression. The cells were incubated with TMZ at varying concentrations in combination with a fixed concentration of Venet. After 48 hours, cell viability and apoptosis assays were performed using spectrophotometry and flow cytometry, respectively. Synergy was evaluated by the Chou-Talalay method. Cleaved-PARP was measured by Western blot in selected combination doses after 3 hours in MV4-11 and MOLM13 and after 6 hours in KG1. Results: KG1 cells expressing high MGMT demonstrated strong resistance to TMZ; however, co-incubation with 1 uM Venet resulted in a marked enhancement of sensitivity to TMZ. Similarly, in MV4-11 and MOLM13 cell lines, which demonstrated very low or absent MGMT expression. Venet 2.5 nM in combination with TMZ markedly increased the cytotoxicity to TMZ. A synergistic effect was demonstrated in all cell lines with combination index (CI) < 1. Cells overexpressed annexin V and propidium iodide (PI) apoptotic marker after drug combination in all cell lines. Apoptotic effect with the drug combination was verified by cleaved-PARP expression. Most (6/8) AML patient samples which were resistant to TMZ in vitro became sensitized to TMZ in combination with 1 uM Venet, including those with moderate to high MGMT expression. Conclusion: Venetoclax synergizes with TMZ and induces cytotoxicity in all AML cell lines and in most AML patient samples, including those in whom MGMT was highly expressed, by activating apoptotic pathways to trigger cell death. This combination represents a potentially promising new treatment. Further studies evaluating this combination in animal models are in progress. Disclosures Brandwein: Roche: Research Funding; Novartis: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria, Research Funding; Otsuka: Honoraria; Jazz Pharma: Consultancy, Honoraria. OffLabel Disclosure: Temozolomide for AML


2021 ◽  
Author(s):  
Wangyang zheng ◽  
Yuling Zheng ◽  
Xue Bai ◽  
Yongxu Zhou ◽  
Liang Yu ◽  
...  

Abstract Background: Ribophorin family (RPNs) are important regulatory subunits of the proteasome. By influencing Ubiquitin-proteasome system activity, RPNs are responsible for almost all processes of physiology and pathology of mammalian cells. Nevertheless, little is known about the role of RPNs in HCC.Methods: In this work, using the online databases Oncomine, UCSC, Kaplan-Meier Plotter, UALCAN, cBioPortal, TIMER2, GeneMANIA,and STRING, we first evaluated the expression, diagnostic, prognostic, genetic alteration, immunity, gene network, and functional enrichment of RPNs in HCC. QPCR and western blot were used to detect RPN6 and RPN9 expressions in HCC tissues and cell lines. Then we performed studies to eveulated their functions in HCC cells proliferation, migration, and invasion in vitro. Results: All RPNs were surprisingly consistently upregulated in HCC tissues. Moreover, RPNs expression pattern is correlated with HCC tumor grade. RPN2, RPN3, RPN6, RPN9, RPN10, RPN11, and RPN12 have robust values in HCC diagnose. Then, survival analysis revealed that high expression of RPN1, RPN2, RPN4, RPN5, RPN6, RPN9, and RPN11were correlated with unfavorable HCC overall survival. Functional enrichment for RPNs, indicated that RPNs have many potential biosynthesis activities expert for UPS functions. Western blot, and qRT-PCR further verified these results in HCC tissues and cell lines. The silencing of RPN6 and RPN9 significantly influenced HCC cells' proliferation, migration, and invasion in vitro.Conclusions: RPN families functions as an important oncogene in HCC. RPN6 and RPN9 have the potential to be potential biomarkers and targets for HCC.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246197
Author(s):  
Jorge Marquez ◽  
Jianping Dong ◽  
Chun Dong ◽  
Changsheng Tian ◽  
Ginette Serrero

Antibody-drug conjugates (ADC) are effective antibody-based therapeutics for hematopoietic and lymphoid tumors. However, there is need to identify new targets for ADCs, particularly for solid tumors and cancers with unmet needs. From a hybridoma library developed against cancer cells, we selected the mouse monoclonal antibody 33B7, which was able to bind to, and internalize, cancer cell lines. This antibody was used for identification of the target by immunoprecipitation and mass spectrometric analysis, followed by target validation. After target validation, 33B7 binding and target positivity were tested by flow cytometry and western blot analysis in several cancer cell lines. The ability of 33B7 conjugated to saporin to inhibit in vitro proliferation of PTFRN positive cell lines was investigated, as well as the 33B7 ADC in vivo effect on tumor growth in athymic mice. All flow cytometry and in vitro internalization assays were analyzed for statistical significance using a Welsh’s T-test. Animal studies were analyzed using Two-Way Analysis of Variance (ANOVA) utilizing post-hoc Bonferroni analysis, and/or Mixed Effects analysis. The 33B7 cell surface target was identified as Prostaglandin F2 Receptor Negative Regulator (PTGFRN), a transmembrane protein in the Tetraspanin family. This target was confirmed by showing that PTGFRN-expressing cells bound and internalized 33B7, compared to PTGFRN negative cells. Cells able to bind 33B7 were PTGFRN-positive by Western blot analysis. In vitro treatment PTGFRN-positive cancer cell lines with the 33B7-saporin ADC inhibited their proliferation in a dose-dependent fashion. 33B7 conjugated to saporin was also able to block tumor growth in vivo in mouse xenografts when compared to a control ADC. These findings show that screening antibody libraries for internalizing antibodies in cancer cell lines is a good approach to identify new cancer targets for ADC development. These results suggest PTGFRN is a possible therapeutic target via antibody-based approach for certain cancers.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 45-45
Author(s):  
Sushanth Gouni ◽  
Paolo Strati ◽  
Jason Westin ◽  
Loretta J. Nastoupil ◽  
Raphael E Steiner ◽  
...  

Background: Pre-clinical studies show that statins may improve the efficacy of chemoimmunotherapy in patients with DLBCL, through interference with cell membrane-initiated signaling pathways. Clinical retrospective studies, however, yield conflicting data, due to heterogeneous properties of statins, including potency and hydrophilicity. Methods: This is a retrospective analysis of patients with previously untreated, advanced stage DLBCL, non-double hit, treated with frontline R-CHOP between 01/01/2000 and 09/01/2019 (data cut-off 04/15/2020) at MD Anderson Cancer Center, and for whom data regarding statin use at time of initiation of treatment were available. Lugano 2014 response criteria were applied retrospectively for response assessment. Cellular cholesterol levels were analyzed in 6 DLBCL cell lines using an Amplex red fluorometric assay. A doxorubicin (DXR)-resistant cell line was generated exposing SUDHL4 cells to escalating doses of DXR; a DXR-resistant DLBCL patient-derived xenograft (PDX) model was established through serial transplantation and exposure to DXR. Results: 271 patients were included in the analysis, 182 (67%) were older than 60 years, 134 (49%) were male, 212 (72%) had stage IV disease, and 217 (80%) had an IPI score &gt; 3; upon pathological review, 38 (36%) cases were non-GCB type, and 18 (28%) were double-expressors; 214 (79%) were able to complete all planned 6 cycles of RCHOP. Seventy-nine (29%) patients received statins at time of initiation of chemoimmunotherapy: 15 patients received low potency statin, 51 medium and 13 high; 18 patients received hydrophilic statins and 61 lipophilic. Patients receiving statins were significantly older as compared to patients who did not (p&lt;0.001); no other significant difference in baseline characteristics was observed when comparing the 2 groups. Overall, 265 out of 271 patients were evaluable for response, as 6 stopped treatment because of toxicity before first response assessment. Among these, ORR was 95% (252/265) and CR rate was 62% (165/265). ORR rate was identical in patients who were treated with statin and those who did not (95% both, p=1). After a median follow-up of 77 months (95% CI, 70-84 months), 119 patients progressed/died, median PFS was not reached and 6-year PFS was 57%. 6-year PFS rate according to statin intensity was: 48% (low), 72% (medium), 57% (high). PFS. 6-year PFS rate was 64% for hydrophilic and 72% for lipophilic statins. Patients treated with statins had a trend for longer PFS (p=0.06), significantly longer for patients receiving medium potency statins (p=0.04). No significant difference in PFS was observed when comparing patients treated with lipophilic statins to all others (not reached vs 84 months, p=0.22). To confirm these clinical data, in-vitro and in-vivo studies were performed. Six cell lines were tested: 4 with high cholesterol content (SUDHL4, HBL1, HT, and U2932; 5.0-8.0 µg/mg protein), and 2 with low cholesterol content (DOHH2 and OCI-LY19; 1.5-2.0 µg/mg protein); the latter showed the highest sensitivity to DXR-mediated killing. The combination of lovastatin and DXR (10nM) was tested in all 4 cell lines with high cholesterol content, resulting in more cell death than either treatment alone. Lovastatin (at the nanomolar range) resensitized DXR-resistant SUDHL4 cells to DXR. Finally, in a DXR-resistant PDX model, the combination of lovastatin and DXR resulted in delayed tumor growth as compared to chemotherapy alone. Conclusions: Use of medium potency statins is associated with improved outcomes after frontline RCHOP in patients with DLBCL. This was further confirmed in functional in-vitro and in-vivo studies. Future interventional studies, aimed at improving outcomes in these patients using this novel combination, are warranted. Disclosures Westin: Amgen: Consultancy; 47: Research Funding; Kite: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Morphosys: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Genentech: Consultancy, Research Funding; Curis: Consultancy, Research Funding; Astra Zeneca: Consultancy, Research Funding. Nastoupil:Gamida Cell: Honoraria; Merck: Research Funding; TG Therapeutics: Honoraria, Research Funding; Karus Therapeutics: Research Funding; Janssen: Honoraria, Research Funding; LAM Therapeutics: Research Funding; Novartis: Honoraria, Research Funding; Bayer: Honoraria; Celgene: Honoraria, Research Funding; Genentech, Inc.: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Gilead/KITE: Honoraria. Neelapu:Bristol-Myers Squibb: Other: personal fees, Research Funding; Merck: Other: personal fees, Research Funding; Kite, a Gilead Company: Other: personal fees, Research Funding; Pfizer: Other: personal fees; Celgene: Other: personal fees, Research Funding; Novartis: Other: personal fees; Karus Therapeutics: Research Funding; N/A: Other; Takeda Pharmaceuticals: Patents & Royalties; Acerta: Research Funding; Cellectis: Research Funding; Poseida: Research Funding; Precision Biosciences: Other: personal fees, Research Funding; Legend Biotech: Other; Adicet Bio: Other; Allogene Therapeutics: Other: personal fees, Research Funding; Cell Medica/Kuur: Other: personal fees; Calibr: Other; Incyte: Other: personal fees; Unum Therapeutics: Other, Research Funding. Landgraf:NCI/NIH: Research Funding. Vega:NCI: Research Funding.


2019 ◽  
Vol 121 (11) ◽  
pp. 922-933 ◽  
Author(s):  
Shaohui He ◽  
Quan Huang ◽  
Jinbo Hu ◽  
Lei Li ◽  
Yanbin Xiao ◽  
...  

Abstract Background The extracellular matrix has been critically associated with the tumorigenesis and progression of Ewing sarcoma (ES). However, the regulatory and prognostic roles of tenascin-C (TNC) in ES remain unclear. Methods TNC expression was examined in specimens by immunohistochemistry, and the association of TNC expression with ES patient survival was also analysed. TNC-knockout cell lines were constructed using CRISPR/Cas9 methods. In vitro experiments and in vivo bioluminescent imaging using BALB/c nude mice were conducted to evaluate the effect of TNC on ES tumour progression. RNA sequencing was performed, and the underlying mechanism of TNC was further explored. Results TNC was overexpressed in ES tissue and cell lines, and TNC overexpression was associated with poor survival in ES patients. TNC enhanced cell proliferation, migration and angiogenesis in vitro and promoted ES metastasis in vivo. The oncoprotein EWS-FLI1 profoundly increased TNC expression by directly binding to the TNC promoter region. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) upregulation induced by Yes-associated protein (YAP) activation was responsible for TNC-regulated ES tumour progression. Activated integrin α5β1 signalling might be correlated with YAP dephosphorylation and nuclear translocation. Conclusions TNC may promote ES tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 711 ◽  
Author(s):  
Haneen Amawi ◽  
Noor Hussein ◽  
Sai H. S. Boddu ◽  
Chandrabose Karthikeyan ◽  
Frederick E. Williams ◽  
...  

Thienopyrimidines containing a thiophene ring fused to pyrimidine are reported to have a wide-spectrum of anticancer efficacy in vitro. Here, we report for the first time that thieno[3,2-d]pyrimidine-based compounds, also known as the RP series, have efficacy in prostate cancer cells. The compound RP-010 was efficacious against both PC-3 and DU145 prostate cancer (PC) cells (IC50 < 1 µM). The cytotoxicity of RP-010 was significantly lower in non-PC, CHO, and CRL-1459 cell lines. RP-010 (0.5, 1, 2, and 4 µM) arrested prostate cancer cells in G2 phase of the cell cycle, and induced mitotic catastrophe and apoptosis in both PC cell lines. Mechanistic studies suggested that RP-010 (1 and 2 µM) affected the wingless-type MMTV (Wnt)/β-catenin signaling pathway, in association with β-catenin fragmentation, while also downregulating important proteins in the pathway, including LRP-6, DVL3, and c-Myc. Interestingly, RP-010 (1 and 2 µM) induced nuclear translocation of the negative feedback proteins, Naked 1 and Naked 2, in the Wnt pathway. In addition, RP-010 (0.5, 1, 2 and 4 µM) significantly decreased the migration of PC cells in vitro. Finally, RP-010 did not produce significant toxic effects in zebrafish at concentrations of up to 6 µM. In conclusion, RP-010 may be an efficacious and relatively nontoxic anticancer compound for prostate cancer. Future mechanistic and in vivo efficacy studies are needed to optimize the hit compound RP-010 for lead optimization and clinical use.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2328
Author(s):  
Kornravee Photichai ◽  
Thunyamas Guntawang ◽  
Tidaratt Sittisak ◽  
Varankpicha Kochagul ◽  
Phongsakorn Chuammitri ◽  
...  

Elephant endotheliotropic herpesvirus (EEHV) infection is known to cause acute fatal hemorrhagic disease, which has killed many young Asian elephants (Elephas maximus). Until recently, in vitro isolation and propagation of the virus have not been successful. This study aimed to isolate and propagate EEHV using continuous cell lines derived from human and/or animal origins. Human cell lines, including EA. hy926, A549, U937, RKO, SW620, HCT-116 and HT-29, and animal cell lines, including CT26.CL25 and sp2/0-Ag14, were investigated in this study. Mixed frozen tissue samples of the heart, lung, liver, spleen and kidney obtained from fatal EEHV1A- or EEHV4-infected cases were homogenized and used for cell inoculation. At 6, 24, 48 and 72 h post infection (hpi), EEHV-inoculated cells were observed for cytopathic effects (CPEs) or were assessed for EEHV infection by immunoperoxidase monolayer assay (IPMA) or quantitative PCR. The results were then compared to those of the mock-infected controls. Replication of EEHV in the tested cells was further determined by immunohistochemistry of cell pellets using anti-EEHV DNA polymerase antibodies or re-inoculated cells with supernatants obtained from passages 2 or 3 of the culture medium. The results reveal that no CPEs were observed in the tested cells, while immunolabeling for EEHV gB was observed in only U937 human myeloid leukemia cells. However, quantitation values of the EEHV terminase gene, as well as those of the EEHV gB or EEHV DNA polymerase proteins in U937 cells, gradually declined from passage 1 to passage 3. The findings of this study indicate that despite poor adaptation in U937 cells, this cell line displays promise and potential to be used for the isolation of EEHV1 and EEHV4 in vitro.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2576-2576
Author(s):  
Tobias Berg ◽  
Manfred Fliegauf ◽  
Jurij Pitako ◽  
Jan Burger ◽  
Mahmoud Abdelkarim ◽  
...  

Abstract Background: The translocation (8;21) is the most common chromosomal rearrangement in AML, resulting in the expression of the fusion protein AML1/ETO. We have developed an ecdysone-inducible U937 model, in which AML1/ETO is expressed in response to treatment with Ponasterone (Pon) A (Fliegauf et al, Oncogene 2004). This model system was used to determine the cellular effects of AML1/ETO and to identify its target genes in U937 cells. Methods: Effects of AML1/ETO expression upon cell growth, viability, cell cycle and apoptosis were analyzed by trypan blue exclusion, FACS analysis using propidium iodide and DiOC6 staining, DNA laddering and Western blot for PARP cleavage, respectively. The gene expression profile of U937 with and without conditional AML1/ETO expression was assessed using Affymetrix U133A microarrays. Wild-type U937 cells with and without PonA treatment as well as AML1/ETO-negative and AML1/ETO-positive myeloid cell lines served as controls. Northern and Western Blotting were used for validation of expression changes. Results: Induction of AML1/ETO expression in U937 resulted in reduced cell growth, G1 arrest and in apoptosis beginning 48–72 hours after PonA treatment. To investigate the underlying mechanisms, microarray analysis was performed. Expression profiles of AML1/ETO-positive and AML1/ETO-negative cell lines formed distinct clusters. Based on stringent criteria, 191 different genes were found upregulated, whereas 37 were downregulated upon expression of AML1/ETO in U937. The identified genes were screened for genes with known functions in cell cycle and apoptosis by automated and manual review and included 13 apoptosis-related genes. Among them, the CDK inhibitor p21/WAF/CIP1 was upregulated 19-fold upon induction of AML1/ETO, whereas the apoptosis regulator MCL-1 was induced 2.5-fold. Based on our criteria, no differential expression of other transcriptionally-controlled apoptosis regulators (such as BCL2, BAX, BAK1, BAD or c-flip) was noted. Northern and Western Blot analysis confirmed the strong induction of p21/WAF/CIP1 that paralleled the expression of AML1/ETO 10 hours after PonA treatment. Induction of p21/WAF/CIP1 was independent of the tumor suppressor protein p53 (Dou et al., Proc. Natl. Acad. Sci. 1995), and by Western blot, p53 was undetectable in U937. Northern Blot analysis revealed a higher expression of p21/WAF/CIP1 in the AML1/ETO-positive cell lines Kasumi-1 and SKNO-1 than in the AML1/ETO-negative cell lines HL-60, KG-1 and U937, supporting our finding that AML1/ETO may induce p21/WAF/CIP1. Conclusions: AML1/ETO expression resulted in increased expression of p21/WAF/CIP1, which might contribute to the observed growth arrest and induction of apoptosis caused by the conditional expression of AML1/ETO.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4921-4921
Author(s):  
Constantine S. Mitsiades ◽  
Michele Agler ◽  
YingJie Zhu ◽  
Melissa Ooi ◽  
Jake Delmore ◽  
...  

Abstract Abstract 4921 INTRODUCTION Tanespimycin (BMS-722782) exhibits antitumor activity in diverse models of hematologic malignancies and solid tumors by suppressing the chaperoning activity of heat shock protein 90 (Hsp90) including its ability to preserve the proper three-dimensional structure and intracellular trafficking of its client proteins. However, not all potential client proteins are affected to the same degree by Hsp90 inhibitors. Tanespimycin is in phase 3 clinical development with bortezomib for the treatment of multiple myeloma (MM). Because glucocorticoids form the backbone of many anti-myeloma regimens, this preclinical study examined the effect of tanespimycin on the glucocorticoid receptor (GR), a chaperone protein of Hsp90. METHODS Our objective is to evaluate whether tanespimycin impedes the nuclear translocation of GR in the presence or absence of GR ligand stimulation and examine the anti-myeloma activity of tanespimycin combinations with glucocorticoids. COS-7 cells transiently transfected with YFP-GR (fluorescently tagged GR) were incubated in the presence or absence of GR ligands (eg, prednisolone), tanespimycin, combinations thereof, or DMSO control. The cellular location of GR (cytoplasm or nucleus) was evaluated using a confocal high content imager. The in vitro anti-MM activity of combinations of tanespimycin with dexamethasone was evaluated by MTT survival assays. RESULTS With prednisolone (100 nM; 30 min) stimulation, GR rapidly translocates to the nucleus, consistent with previous observations. Tanespimycin did not induce GR nuclear translocation, but resulted in heterogeneous cytoplasmic aggregates of GR. Pretreatment of COS-7/YFP-GR cells with tanespimycin for 30 minutes inhibited prednisolone-induced (5 nM; 2 h and 4 h) GR nuclear translocation at higher tanespimycin concentrations (eg, 1.25 μM), but partial GR translocation was observed at lower (4.8 nM) concentrations. However, complete ligand-induced GR nuclear translocation was observed when COS-7/YFP-GR cells were pretreated with either prednisolone or dexamethasone (dose ranges 10 μM–0.019 nM; 30 min) prior to the addition of clinically relevant tanespimycin concentrations (200 nM; 1, 2, 6, and 24 h). In vitro cell viability assays with the human MM cell line MM.1S were consistent with these observations. Concurrent administration of dexamethasone (40–80 nM; 72 h) and tanespimycin (0.5–1 μM) to MM cells did not exhibit antagonistic interaction. Similarly, no antagonistic interaction was observed when dexamethasone pretreatment was followed by tanespimycin. Interestingly, for some of the experimental conditions of these combinations, at least additive effects on suppression of MM cell survival were observed. CONCLUSION These results suggest that appropriate sequencing of tanespimycin and GR ligands can avoid any theoretical antagonistic effect of Hsp90 inhibition on GR nuclear translocation, thus providing a framework for incorporation of dexamethasone or other glucocorticoids into tanespimycin-based regimens. Disclosures Mitsiades: Millennium, Novartis, BMS, Merck, Kosan, Pharmion: Honoraria; Amgen, AVEO, EMD Serono and Sunesis: Research Funding; Millennium, Novartis, BMS, Merck, Kosan, Pharmion: Consultancy; PharmaMar: Patents & Royalties. Anderson:Celgene, Novartis, Millennium, BMS: Consultancy; Celgene, Novartis, Millennium, BMS: Research Funding; Celgene, Novartis, Millennium, BMS: Honoraria. Richardson:Celgene: Speakers Bureau; Millennium Pharmaceuticals, Inc.: Research Funding, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document