Differential Targeting of Signaling Pathways to Selectively Expand Mouse Regulatory T Cells While Inhibiting Conventional T Cells.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2158-2158
Author(s):  
Atsushi Satake ◽  
Amanda M Schmidt ◽  
Angela Archambault ◽  
Gregory F Wu ◽  
Taku Kambayashi

Abstract Abstract 2158 Regulatory T cells (Tregs) are suppressive T cells with therapeutic potential for ameliorating T cell-mediated diseases. Thus, there has been great interest in revealing the mechanisms by which Tregs proliferate. Recently, we reported that TCR signaling is partially dispensable for Treg proliferation in vivo when exogenous IL-2 is administered. Based on this data, we hypothesized that when given in conjunction with IL-2, pharmacological inhibition of TCR signaling might allow Tregs to expand while simultaneously inhibiting conventional T cell (Tconv) proliferation. Using mutant mice with defective TCR-mediated PLCγ activation, we found that the activation of PLCγ is dispensable for IL-2-mediated Treg proliferation. In contrast, costimulation-derived mTOR signaling was required for IL-2-induced Treg proliferation. We next used Cyclosporine A (CSA; calcineurin inhibitor) and rapamycin (mTOR inhibitor) to differentially target these signaling pathways. Consistent with our hypothesis, while both CSA and rapamycin suppressed antigen-specific Tconv proliferation, only CSA permitted IL-2-induced Treg expansion in vitro and in vivo. Rapamycin, however, did increase the overall Treg:Tconv ratio due to its negative effects on Tconv survival. Given that CSA inhibited antigen-specific Tconv proliferation while maintaining IL-2-induced Treg expansion, we hypothesized that the combination of CSA and IL-2 would be beneficial for attenuating T cell-mediated disease. Indeed, CSA synergized with IL-2 in protection against experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Surprisingly, however, the administration of CSA blocked whereas rapamycin augmented the beneficial effect of IL-2 in graft-versus-host disease (GVHD). These differences potentially results from the overt TCR stimulation that Tregs would receive in the allogeneic (GVHD) vs. syngeneic (EAE) environment. Moreover, inducible Treg (iTreg) generation from allogeneic MHC-stimulated naïve Tconvs contributes greatly to the Treg pool during GVHD. This was consistent with our data showing that rapamycin promotes iTreg generation and allows TCR-enhanced Treg proliferation, whereas CSA inhibited both of these processes. Thus, depending on the disease setting, the signaling pathways contributing to expansion of the Treg pool need to be carefully considered and specifically targeted to increase the Treg:Tconv ratio in treatment of T cell-mediated disorders. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3728-3728
Author(s):  
Kenrick Semple ◽  
Antony Nguyen ◽  
Yu Yu ◽  
Claudio Anasetti ◽  
Xue-Zhong Yu

Abstract Abstract 3728 CD28 costimulation is required for the generation of naturally-derived regulatory T cells (nTregs) in the thymus through Lck-signaling. However, it is not clear how CD28 costimulation regulates the generation of induced Tregs (iTregs) from naïve CD4 T-cell precursors in the periphery. To address this question, we induced iTregs (CD25+Foxp3+) from naïve CD4 T cells (CD25−Foxp3−) by TCR-stimulation with additional TGFβ in vitro, and found that the generation of iTregs was inversely related to the level of CD28 costimulation independently of IL-2. By using a series of transgenic mice on CD28-deficient background that bears WT CD28 or mutated CD28 in its cytosolic tail incapable of binding to Lck, PI3K or Itk, we found that CD28-mediated Lck-signaling plays an essential role in the suppression of iTreg generation under strong CD28 costimulation. Furthermore, we demonstrate that T cells with the CD28 receptor incapable of activating Lck were prone to iTreg induction in vivo, which contributed to their reduced ability to cause graft-versus-host disease. These findings reveal a novel mechanistic insight into how CD28 costimulation negatively regulates the generation of iTregs, and provide the rationale for promoting T-cell immunity or tolerance by regulating Tregs through targeting CD28-signaling. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


2021 ◽  
Vol 12 ◽  
Author(s):  
Manoj Patidar ◽  
Naveen Yadav ◽  
Sarat K. Dalai

IL-15 is one of the important biologics considered for vaccine adjuvant and treatment of cancer. However, a short half-life and poor bioavailability limit its therapeutic potential. Herein, we have structured IL-15 into a chimeric protein to improve its half-life enabling greater bioavailability for longer periods. We have covalently linked IL-15 with IgG2 base to make the IL-15 a stable chimeric protein, which also increased its serum half-life by 40 fold. The dimeric structure of this kind of IgG based biologics has greater stability, resistance to proteolytic cleavage, and less frequent dosing schedule with minimum dosage for achieving the desired response compared to that of their monomeric forms. The structured chimeric IL-15 naturally forms a dimer, and retains its affinity for binding to its receptor, IL-15Rβ. Moreover, with the focused action of the structured chimeric IL-15, antigen-presenting cells (APC) would transpresent chimeric IL-15 along with antigen to the T cell, that will help the generation of quantitatively and qualitatively better antigen-specific memory T cells. In vitro and in vivo studies demonstrate the biological activity of chimeric IL-15 with respect to its ability to induce IL-15 signaling and modulating CD8+ T cell response in favor of memory generation. Thus, a longer half-life, dimeric nature, and anticipated focused transpresentation by APCs to the T cells will make chimeric IL-15 a super-agonist for memory CD8+ T cell responses.


2018 ◽  
Vol 215 (4) ◽  
pp. 1101-1113 ◽  
Author(s):  
Marc-Werner Dobenecker ◽  
Joon Seok Park ◽  
Jonas Marcello ◽  
Michael T. McCabe ◽  
Richard Gregory ◽  
...  

Differentiation and activation of T cells require the activity of numerous histone lysine methyltransferases (HMT) that control the transcriptional T cell output. One of the most potent regulators of T cell differentiation is the HMT Ezh2. Ezh2 is a key enzymatic component of polycomb repressive complex 2 (PRC2), which silences gene expression by histone H3 di/tri-methylation at lysine 27. Surprisingly, in many cell types, including T cells, Ezh2 is localized in both the nucleus and the cytosol. Here we show the presence of a nuclear-like PRC2 complex in T cell cytosol and demonstrate a role of cytosolic PRC2 in T cell antigen receptor (TCR)–mediated signaling. We show that short-term suppression of PRC2 precludes TCR-driven T cell activation in vitro. We also demonstrate that pharmacological inhibition of PRC2 in vivo greatly attenuates the severe T cell–driven autoimmunity caused by regulatory T cell depletion. Our data reveal cytoplasmic PRC2 is one of the most potent regulators of T cell activation and point toward the therapeutic potential of PRC2 inhibitors for the treatment of T cell–driven autoimmune diseases.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3436-3436
Author(s):  
Renier J. Brentjens ◽  
Daniel Hollyman ◽  
Jae Park ◽  
Elmer Santos ◽  
Raymond Yeh ◽  
...  

Abstract Abstract 3436 Poster Board III-324 Patient T cells may be genetically modified to express chimeric antigen receptors (CARs) targeted to antigens expressed on tumor cells. We have initiated a clinical trial treating chemotherapy-refractory chronic lymphocytic leukemia (CLL) patients with autologous T cells modified to express the 19-28z CAR targeted to the CD19 antigen expressed on most B cell malignancies. In the first cohort of this trial, patients were infused with the lowest planned dose of modified T cells alone. All patients treated in this cohort experienced low-grade fevers following modified T cell infusion, and 2 of 3 treated patients exhibited subjective and laboratory evidence of transient reductions in tumor burden. The first patient treated on the second cohort of this study received prior cyclophophamide chemotherapy followed by the same dose of modified T cells administered to the first cohort of patients. This patient experienced persistent fevers, dyspnea, hypotension, renal failure, and died 44 hours following modified T cell infusion, likely secondary to sepsis. Modified T cells were not detectable in the peripheral blood of treated patients at 1 hour following completion of T cell infusion. However, post mortem analyses revealed a rapid infiltration of targeted T cells into anatomical sites of tumor involvement. Serum levels of the inflammatory cytokines IL-5, IL-8, and GM-CSF, but not TNFα, markedly and rapidly increased following infusion of genetically targeted T cells in this patient, mirroring the in vitro cytokine secretion profile of this patient's T cells, and consistent with marked in vivo activation of the modified T cells. Similar cytokine signatures were not found in patients from the first cohort. Significantly, serum cytokine analyses from the second cohort patient revealed a marked increase in the pro-proliferative cytokines IL-2, IL-7, IL-12, and IL-15 following cyclophosphamide therapy, in contrast to the baseline levels found in the first cohort. This report demonstrates the high efficiency trafficking of CD19-targeted T cells and in vivo activation of T cells encoding a second generation CD28/zeta chain-based chimeric antigen receptor. Furthermore, these data highlight mechanisms whereby cyclophosphamide may generate an in vivo milieu that enhances the anti-tumor efficacy of autologous tumor targeted T cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2782-2782
Author(s):  
Anna Maria Wolf ◽  
Dominik Wolf ◽  
Andrew McKenzie ◽  
Marcus Maurer ◽  
Alexander R Rosenkranz ◽  
...  

Abstract Abstract 2782 Tipping the balance between effector and regulatory cell populations is of critical importance in the pathogenesis of various autoimmune disorders. Both, mast cells (MC) and regulatory T cells (Treg) have gained attention as immunosuppressive cell populations. To investigate a possible interaction, we used the Th1- and Th17-dependent model of nephrotoxic serum nephritis (NTS), in which both MC and Treg have been shown to play a protective role. We recently provided evidence that adoptive transfer of wild-type (wt) Treg into wt recipients almost completely prevents development of NTS. We here show that Treg transfer induces a profound increase of MC in the kidney draining lymph nodes (LN). In contrast, transfer of wt Treg into animals deficient in MC, which are characterized by an exaggerated susceptibility to NTS, do not prevent acute renal inflammation. Blocking the pleiotropic cytokine IL-9, which is known to be critically involved in MC recruitment and proliferation, by means of an antagonizing monoclonal antibody in animals receiving wt Treg abrogated protection from NTS. Moreover, we provide clear evidence that Treg-derived IL-9 is critical for MC recruitment as mediators of their full immune-suppressive potential, as adoptive transfer of IL-9 deficient Treg failed to protect from NTS. In line with our hypothesis, absence of Treg-derived IL-9 does not induce MC accumulation into kidney-draining LN, despite the fact that IL-9 deficiency does not alter the general suppressive activity of Treg, as shown by in vitro testing of their functional capacities. Finally, we observed a significantly decreased expression of the MC chemoattractant Cxcl-1 in the LN of mice receiving IL-9 deficient Treg as compared to mice receiving wt Treg or control CD4+CD25− T cells, which might at least in part explain the deficient MC recruitment under these conditions. In summary, our data provide the first evidence that the immunosuppressive effects of adoptively transferred Treg depend on IL-9-mediated recruitment of MC to the kidney draining LN in NTS. This data is in perfect agreement with our previous report showing that CCR7-mediated LN occupancy of Treg is a prerequisite for their immune-suppressive potential and furthers adds a piece of information to the functional understanding of the in vivo anti-inflammatory effects of Treg. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2181-2181
Author(s):  
Tao Zou ◽  
Atsushi Satake ◽  
Jonathan Maltzman ◽  
Taku Kambayashi

Abstract Abstract 2181 Regulatory T cells (Tregs) protect the host from autoimmunity and inappropriate immune activation. Thus, to ensure immune tolerance in the steady state, an adequate number of peripheral Tregs must be constantly maintained. Prior work has suggested that major histocompatibility class II (MHC II) and interleukin-2 (IL-2) are both necessary to maintain peripheral Treg homeostasis and proliferation in vivo. However, we have recently reported that Treg proliferation may not strictly depend on MHC II, as the provision of IL-2 was sufficient to drive proliferation of Tregs in an MHC II-independent manner in vitro, as long as the Tregs interacted with dendritic cells (DC)s. Here, extending our previous in vitro observations, we tested the dependence of Treg proliferation on IL-2, DCs, and TCR signaling in vivo. Proliferation of adoptively transferred Tregs was detected in wildtype (WT) mice. This proliferation was markedly enhanced when the mice were injected with IL-2 immune complexes (IC)s but not when the IL-2 IC-injected mice lacked DCs, suggesting that IL-2-induced Treg proliferation was dependent on DCs in vivo. As previously reported, adoptively transferred Tregs did not proliferate in MHC II-deficient hosts. However, the injection of IL-2 ICs into these mice induced Treg proliferation comparable to those transferred into IL-2 IC-injected WT mice, suggesting that IL-2 signaling by Tregs obviated the need of MHC II for their proliferation. Furthermore, while the ablation of TCR signaling by conditional deletion of the adaptor protein SH2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) rendered Tregs unable to proliferate by themselves, IL-2 IC treatment partially rescued this deficiency. We next examined the signaling pathways involved in Treg proliferation downstream of the IL-2 receptor. Despite the importance of the Stat5 pathway in IL-2 receptor signaling during Treg development in the thymus, activation of Stat5b alone was insufficient to rescue proliferation of SLP-76-deficient Tregs, indicating that alternative pathways must also be activated for Treg proliferation. Additional studies investigating the role of other signaling molecules downstream of the IL-2 receptor are currently underway. In summary, we have demonstrated for the first time that Tregs do not require TCR signaling through interaction with MHC II for their proliferation in vivo. We propose that this MHC II-independent mode of Treg proliferation allows Tregs with multiple antigen specificities to proliferate, which ensures that a diverse TCR repertoire is continuously maintained in the Treg pool. Furthermore, we believe that exploitation of these pathways may be therapeutically beneficial in autoimmunity and in transplantation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4670-4670
Author(s):  
Chang-Qing Xia ◽  
Anna Chernatynskaya ◽  
Clive Wasserfall ◽  
Benjamin Looney ◽  
Suigui Wan ◽  
...  

Abstract Abstract 4670 Anti-thymocyte globulin (ATG) has been used in clinic for the treatment of allograft rejection and autoimmune diseases. However, its mechanism of action is not fully understood. To our knowledge, how ATG therapy affects naïve and memory T cells has not been well investigated. In this study, we have employed nonobese diabetic mouse model to investigate how administration of anti-thymocyte globulin (ATG) affects memory and naïve T cells as well as CD4+CD25+Foxp3+ regulatory T cells in peripheral blood and lymphoid organs; We also investigate how ATG therapy affects antigen-experienced T cells. Kinetic studies of peripheral blood CD4+ and CD8+ T cells post-ATG therapy shows that both populations decline to their lowest levels at day 3, while CD4+ T cells return to normal levels more rapidly than CD8+ T cells. We find that ATG therapy fails to eliminate antigen-primed T cells, which is consistent with the results that ATG therapy preferentially depletes naïve T cells relative to memory T cells. CD4+ T cell responses post-ATG therapy skew to T helper type 2 (Th2) and IL-10-producing T regulatory type 1 (Tr1) cells. Intriguingly, Foxp3+ regulatory T cells (Tregs) are less sensitive to ATG depletion and remain at higher levels following in vivo recovery compared to controls. Of note, the frequency of Foxp3+ Tregs with memory-like immunophenotype is significantly increased in ATG-treated animals, which might play an important role in controlling effector T cells post ATG therapy. In summary, ATG therapy may modulate antigen-specific immune responses through modulation of naïve and memory T cell pools and more importantly through driving T cell subsets with regulatory activities. This study provides important data for guiding ATG therapy in allogenieic hematopoietic stem cell transplantation and other immune-mediated disorders. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 109 (9) ◽  
pp. 4071-4079 ◽  
Author(s):  
Dong Zhang ◽  
Wei Yang ◽  
Nicolas Degauque ◽  
Yan Tian ◽  
Allison Mikita ◽  
...  

Abstract Recent studies have demonstrated that in peripheral lymphoid tissues of normal mice and healthy humans, 1% to 5% of αβ T-cell receptor–positive (TCR+) T cells are CD4−CD8− (double-negative [DN]) T cells, capable of down-regulating immune responses. However, the origin and developmental pathway of DN T cells is still not clear. In this study, by monitoring CD4 expression during T-cell proliferation and differentiation, we identified a new differentiation pathway for the conversion of CD4+ T cells to DN regulatory T cells. We showed that the converted DN T cells retained a stable phenotype after restimulation and that furthermore, the disappearance of cell-surface CD4 molecules on converted DN T cells was a result of CD4 gene silencing. The converted DN T cells were resistant to activation-induced cell death (AICD) and expressed a unique set of cell-surface markers and gene profiles. These cells were highly potent in suppressing alloimmune responses both in vitro and in vivo in an antigen-specific manner. Perforin was highly expressed by the converted DN regulatory T cells and played a role in DN T-cell–mediated suppression. Our findings thus identify a new differentiation pathway for DN regulatory T cells and uncover a new intrinsic homeostatic mechanism that regulates the magnitude of immune responses. This pathway provides a novel, cell-based, therapeutic approach for preventing allograft rejection.


Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3096-3103 ◽  
Author(s):  
Kenrick Semple ◽  
Antony Nguyen ◽  
Yu Yu ◽  
Honglin Wang ◽  
Claudio Anasetti ◽  
...  

Abstract CD28 costimulation is required for the generation of naturally derived regulatory T cells (nTregs) in the thymus through lymphocyte-specific protein tyrosine kinase (Lck) signaling. However, it is not clear how CD28 costimulation regulates the generation of induced Tregs (iTregs) from naive CD4 T-cell precursors in the periphery. To address this question, we induced iTregs (CD25+Foxp3+) from naive CD4 T cells (CD25−Foxp3−) by T-cell receptor stimulation with additional transforming growth factorβ (TGFβ) in vitro, and found that the generation of iTregs was inversely related to the level of CD28 costimulation independently of IL-2. Using a series of transgenic mice on a CD28-deficient background that bears wild-type or mutated CD28 in its cytosolic tail that is incapable of binding to Lck, phosphoinositide 3-kinase (PI3K), or IL-2–inducible T-cell kinase (Itk), we found that CD28-mediated Lck signaling plays an essential role in the suppression of iTreg generation under strong CD28 costimulation. Furthermore, we demonstrate that T cells with the CD28 receptor incapable of activating Lck were prone to iTreg induction in vivo, which contributed to their reduced ability to cause graft-versus-host disease. These findings reveal a novel mechanistic insight into how CD28 costimulation negatively regulates the generation of iTregs, and provide a rationale for promoting T-cell immunity or tolerance by regulating Tregs through targeting CD28 signaling.


Sign in / Sign up

Export Citation Format

Share Document