Physical Interaction of Histone Deacetylase 6 (HDAC6) with STAT3 Regulates IL-10 Gene Expression and Immune Tolerance Mediated by Antigen-Presenting Cells (APCs)

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 829-829
Author(s):  
Fengdong Cheng ◽  
Zi Wang ◽  
Hongwei Wang ◽  
Maritza Lienlaf ◽  
Karrune V. Woan ◽  
...  

Abstract Abstract 829 APCs are critical in T-cell activation and in the induction of T-cell tolerance. Epigenetic modifications of specific genes in the APC play a key role in this process, and among them, histone deacetylases (HDACs) have emerged as key participants. HDAC6 is a 131 KDa protein with preferential cytoplasmic localization where it regulates the acetylation of proteins involved in cytoskeleton, cell-cell interaction and cell migration. Emerging evidence also implicates HDAC6 in regulation of immune responses, in particular at the level of the APC/T cell immune synapse1 and in the suppressive function of regulatory T-cells2. Expanding upon these immunoregulatory properties, here we show for the first time that HDAC6 physically interacts with STAT3, a transcriptional activator of IL-10 gene expression. By co-immunoprecipitation studies and confocal studies we found that HDAC6 co-localize with STAT3 in the cytoplasm and nuclei of macrophages. Furthermore, by using several HDAC6 and STAT3 mutants we have identified that the aminoacids 503–840 of HDAC6 and the STAT3 domain comprising aminoacids 465–585 are required for this interaction. Functionally, knocking down HDAC6 in a macrophage cell line (RAW264.7-HDAC6KD) resulted in inhibition of STAT3 phosphorylation, decreased recruitment of STAT3 to the IL-10 gene promoter and abrogation of IL-10 production by these cells in response to either LPS or IL-10. Similar results were observed in dendritic cells (DCs) or macrophages isolated from HDAC6 knock-out (KO) mice. Furthermore, HDAC6KD clones or APCs from HDAC6 KO mice displayed an enhanced expression of the co-stimulatory molecule B7.2 and are better activators of antigen-specific CD4+ T-cell responses in vitro. More importantly, these APCs are able of restoring the responsiveness of anergic T-cells from lymphoma-bearing mice. Pharmacologic inhibition of HDAC6 in APCs with Tubastatin A, an isotype-selective HDAC6 inhibitor, yielded similar enhancement of APC and T-cell function in vitro. Further support for HDAC6 as an appealing target in cancer immunotherapy has been recently provided by the significant delay in tumor growth observed in either HDAC6 KO mice or in wild type mice treated with Tubastatin A. In summary, we have shown for the first time that HDAC6 interacts physically with STAT3 and such an interaction is necessary for STAT3 phosphorylation and IL-10 gene expression in APCs. Disrupting the HDAC6/STAT3/IL-10 axis in APCs with selective HDAC6 inhibitors represents a novel approach to overcome tolerogenic pathways in these cells and tip the balance towards effective antitumor immune responses. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4057-4057 ◽  
Author(s):  
Kirsten Marie Boughan ◽  
Xiaohua Chen ◽  
Paul Szabolcs

Abstract Background: AML remains a disease diagnosed in the aging population with chemotherapy followed by bone marrow transplant in some cases being the standard of care. Although response rates remain around 50-60%, treatment related mortality and disease relapse remain high. Adoptive immunotherapy, especially those targeting T cell co-inhibitory receptors, has proven successful in solid malignancies however, AML remains less explored. Our laboratory has previously demonstrated the feasibility to generate autologous AML reactive T cells in vitro (Mehta/Szabolcs; Immunotherapy 2016). It was noted that "resistant" AML blasts over expressed a number of genes associated with immunosuppressive characteristics. Over expression of these genes may induce T cell functional exhaustion. Therefore, we hypothesized that blocking PD-1 and/or CTLA-4 during co-culture with IFNg activated AML blasts, may enhance T cell activation and cytotoxicity. To test this hypothesis, we tested CTL responses against AML blasts and IFNg ELISpot formation after blocking with PD-1, CTLA-4 or both receptors, and compared the response in untreated T cells. Gene expression profiles of co-stimulatory/co-inhibitory receptors were also monitored to test for correlation. Methods: We evaluated 12 patients with newly diagnosed AML under an IRB approved protocol with written informed consent of patients. Mononuclear cell preparation was generated from fresh marrow samples or drawn from a biorepository of previously cryopreserved leukophereses. T cells were then purified using immunomagnetic CD3/CD28 beads (Life technologies) and cultivated in media with IL-2 and IL-7 for 2 weeks. AML blasts were cultured over a supporting layer of mesenchymal stromal cells (MSCs) derived from healthy BM donors for 1 week and then cryopreserved. T cells were then co-cultured with restored and irradiated autologous AML cells at an effector: target (E: T) ratio of 5:1 to 40:1. AML and T cells were co-cultured in the presence of Ipilimumab (anti-CTLA-4), or Nivolumab (anti-PD-1), or a combination of both drugs. T cells and AML were re stimulated in X-vivo 15 with IL-12, IL-15 and IL-2 weekly x 3weeks. T cell response to AML was quantitated by IFNg ELISpot assay and Europium TDA (EuTDA) CTL assays independently. Co-stimulatory/co-inhibitory expression on T cells was examined with RT-q PCR assay. Paired-sample student t test was used for statistical analysis with p<0.05. Results and Discussion: Out of 12 samples, 10 (83%) yielded viable AML cells available for cytotoxicity assay. One third (33%) of co-cultures exhibited a positive T cell response in CTL assays ("killers"). There was no difference in CTL activity by blockade of either PD-1 or CTL-4 (Fig 1). IFN-ɣ spot formation in ELISpot was observed in 4/10 samples (40%) with statistical significance noted in cells blocked with PD-1 as compared to all other blockade types (Fig 2). The results indicated that in vitro priming with autologous AML blasts or together with blocking PD-1 can enhance T cell response in 33-40%. By gene expression analysis, the ratio of co-stimulatory to co-inhibitory genes was calculated. In PD-1 blocked cells, the ratio of activation/inhibition was not impacted in T cells from "killers" (0.9; p=0.1), however, T cells from "non-killer cells" had a diminished ratio due to higher expression of co-inhibitory molecules (0.4; p=0.04) (Fig 3). This trend was also present in CTLA-4 blocked cells (0.85; p=0.4 in killers vs 0.54; p=0.03 in non-killers) (data not shown). Interestingly, dual blockage failed to influence gene expression ratio, data not shown. Conclusion: The above studies demonstrate that cytotoxicity can be achieved in T cells when primed against autologous AML. PD-1 blockade can enhance IFNg production and cytotoxic responses, but CTLA-4 and dual blockade failed to enhance T cell function. The upregulation of an inhibitory pattern of genes in T cells that did not express cytotoxicity (non-killers) could allude to an "inhibitory phenotype" that may be resistant to immunotherapy drug blockade and requires further study. Disclosures No relevant conflicts of interest to declare.


2022 ◽  
Vol 12 ◽  
Author(s):  
Niels C. Lory ◽  
Mikolaj Nawrocki ◽  
Martina Corazza ◽  
Joanna Schmid ◽  
Valéa Schumacher ◽  
...  

Antigen recognition by the T-cell receptor induces a cytosolic Ca2+ signal that is crucial for T-cell function. The Ca2+ channel TRPM2 (transient receptor potential cation channel subfamily M member 2) has been shown to facilitate influx of extracellular Ca2+ through the plasma membrane of T cells. Therefore, it was suggested that TRPM2 is involved in T-cell activation and differentiation. However, these results are largely derived from in vitro studies using T-cell lines and non-physiologic means of TRPM2 activation. Thus, the relevance of TRPM2-mediated Ca2+ signaling in T cells remains unclear. Here, we use TRPM2-deficient mice to investigate the function of TRPM2 in T-cell activation and differentiation. In response to TCR stimulation in vitro, Trpm2-/- and WT CD4+ and CD8+ T cells similarly upregulated the early activation markers NUR77, IRF4, and CD69. We also observed regular proliferation of Trpm2-/- CD8+ T cells and unimpaired differentiation of CD4+ T cells into Th1, Th17, and Treg cells under specific polarizing conditions. In vivo, Trpm2-/- and WT CD8+ T cells showed equal specific responses to Listeria monocytogenes after infection of WT and Trpm2-/- mice and after transfer of WT and Trpm2-/- CD8+ T cells into infected recipients. CD4+ T-cell responses were investigated in the model of anti-CD3 mAb-induced intestinal inflammation, which allows analysis of Th1, Th17, Treg, and Tr1-cell differentiation. Here again, we detected similar responses of WT and Trpm2-/- CD4+ T cells. In conclusion, our results argue against a major function of TRPM2 in T-cell activation and differentiation.


Blood ◽  
2012 ◽  
Vol 120 (23) ◽  
pp. 4560-4570 ◽  
Author(s):  
Yuning Lu ◽  
Helga Schneider ◽  
Christopher E. Rudd

Abstract CTLA-4 inhibits T-cell activation and protects against the development of autoimmunity. We and others previously showed that the coreceptor can induce T-cell motility and shorten dwell times with dendritic cells (DCs). However, it has been unclear whether this property of CTLA-4 affects both conventional T cells (Tconvs) and regulatory T cells (Tregs). Here, we report that CTLA-4 had significantly more potent effects on the motility and contact times of Tconvs than Tregs. This was shown firstly by anti–CTLA-4 reversal of the anti-CD3 stop-signal on FoxP3-negative cells at concentrations that had no effect on FoxP3-positive Tregs. Secondly, the presence of CTLA-4 reduced the contact times of DO11.10 x CD4+CD25− Tconvs, but not DO11.10 x CD4+CD25+ Tregs, with OVA peptide presenting DCs in lymph nodes. Thirdly, blocking of CTLA-4 with anti–CTLA-4 Fab increased the contact times of Tconvs, but not Tregs with DCs. By contrast, the presence of CD28 in a comparison of Cd28−/− and Cd28+/+ DO11.10 T cells had no detectable effect on the contact times of either Tconvs or Tregs with DCs. Our findings identify for the first time a mechanistic explanation to account for CTLA-4–negative regulation of Tconv cells but not Tregs in immune responses.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi129-vi129
Author(s):  
Marilin Koch ◽  
Mykola Zdioruk ◽  
M Oskar Nowicki ◽  
Estuardo Aguilar ◽  
Laura Aguilar ◽  
...  

Abstract RATIONALE Dexamethasone is frequently used in symptomatic treatment of glioma patients, although it is known to cause immune suppression. Checkpoint inhibitor immunotherapies have not yet been successful in glioma treatments. Gene-mediated cytotoxic immunotherapy (GMCI) is an immunotherapeutic approach that uses aglatimagene besadenovec with an anti-herpetic prodrug to induce immunogenic tumor cell death and immune cell attraction to the tumor site with potent CD8 T cell activation. GMCI is currently in clinical trials for solid tumors including glioblastoma, where it showed encouraging survival results in a Phase 2 study that did not limit the use of dexamethasone. However, the effects of dexamethasone on its efficacy have not been explored. METHODS We investigated the effects of dexamethasone on GMCI in vitro using cytotoxicity and T-cell-killing assays in glioblastoma cell lines. The impact of dexamethasone in vivo was assessed in an orthotopic syngeneic murine glioblastoma model. RESULTS Cyotoxicity assays showed that Dexamethasone has a slight impact on GMCI in vitro. In contrast, we observed a highly significant effect in T-cell-functional assays in which killing was greatly impaired. Immune cell response assays revealed a reduced T-cell proliferation after co-culture with supernatant from dexamethasone or combination treated glioblastoma cells in contrast to GMCI alone. In a murine model, the combination of GMCI and dexamethasone resulted in a significant reduction in median symptom-free survival (29d) in comparison to GMCI alone (39.5d) (P = 0.0184). CONCLUSION Our data suggest that high doses of dexamethasone may negatively impact the efficacy of immunotherapy for glioma, which may be a consequence of impaired T cell function. These results support the idea that there is a need in identifying possible alternatives to dexamethasone to maximize the effectiveness of immunostimulatory therapies such as GMCI.


2017 ◽  
Vol 313 (2) ◽  
pp. L406-L415 ◽  
Author(s):  
Gene T. Yocum ◽  
Damian L. Turner ◽  
Jennifer Danielsson ◽  
Matthew B. Barajas ◽  
Yi Zhang ◽  
...  

Emerging evidence indicates that hypnotic anesthetics affect immune function. Many anesthetics potentiate γ-aminobutyric acid A receptor (GABAAR) activation, and these receptors are expressed on multiple subtypes of immune cells, providing a potential mechanistic link. Like immune cells, airway smooth muscle (ASM) cells also express GABAARs, particularly isoforms containing α4-subunits, and activation of these receptors leads to ASM relaxation. We sought to determine if GABAAR signaling modulates the ASM contractile and inflammatory phenotype of a murine allergic asthma model utilizing GABAAR α4-subunit global knockout (KO; Gabra40/0) mice. Wild-type (WT) and Gabra4 KO mice were sensitized with house dust mite (HDM) antigen or exposed to PBS intranasally 5 days/wk for 3 wk. Ex vivo tracheal rings from HDM-sensitized WT and Gabra4 KO mice exhibited similar magnitudes of acetylcholine-induced contractile force and isoproterenol-induced relaxation ( P = not significant; n = 4). In contrast, in vivo airway resistance (flexiVent) was significantly increased in Gabra4 KO mice ( P < 0.05, n = 8). Moreover, the Gabra4 KO mice demonstrated increased eosinophilic lung infiltration ( P < 0.05; n = 4) and increased markers of lung T-cell activation/memory (CD62L low, CD44 high; P < 0.01, n = 4). In vitro, Gabra4 KO CD4+ cells produced increased cytokines and exhibited increased proliferation after stimulation of the T-cell receptor as compared with WT CD4+ cells. These data suggest that the GABAAR α4-subunit plays a role in immune cell function during allergic lung sensitization. Thus GABAAR α4-subunit-specific agonists have the therapeutic potential to treat asthma via two mechanisms: direct ASM relaxation and inhibition of airway inflammation.


1997 ◽  
Vol 185 (12) ◽  
pp. 2133-2141 ◽  
Author(s):  
Elizabeth Ingulli ◽  
Anna Mondino ◽  
Alexander Khoruts ◽  
Marc K. Jenkins

Although lymphoid dendritic cells (DC) are thought to play an essential role in T cell activation, the initial physical interaction between antigen-bearing DC and antigen-specific T cells has never been directly observed in vivo under conditions where the specificity of the responding T cells for the relevant antigen could be unambiguously assessed. We used confocal microscopy to track the in vivo location of fluorescent dye-labeled DC and naive TCR transgenic CD4+ T cells specific for an OVA peptide–I-Ad complex after adoptive transfer into syngeneic recipients. DC that were not exposed to the OVA peptide, homed to the paracortical regions of the lymph nodes but did not interact with the OVA peptide-specific T cells. In contrast, the OVA peptide-specific T cells formed large clusters around paracortical DC that were pulsed in vitro with the OVA peptide before injection. Interactions were also observed between paracortical DC of the recipient and OVA peptide-specific T cells after administration of intact OVA. Injection of OVA peptide-pulsed DC caused the specific T cells to produce IL-2 in vivo, proliferate, and differentiate into effector cells capable of causing a delayed-type hypersensitivity reaction. Surprisingly, by 48 h after injection, OVA peptide-pulsed, but not unpulsed DC disappeared from the lymph nodes of mice that contained the transferred TCR transgenic population. These results demonstrate that antigen-bearing DC directly interact with naive antigen-specific T cells within the T cell–rich regions of lymph nodes. This interaction results in T cell activation and disappearance of the DC.


2020 ◽  
Author(s):  
Sandra Hellberg ◽  
Johanna Raffetseder ◽  
Olof Rundquist ◽  
Rasmus Magnusson ◽  
Georgia Papapavlou ◽  
...  

ABSTRACTThe changes in progesterone (P4) levels during and after pregnancy coincide with the temporary improvement and worsening of several autoimmune diseases like multiple sclerosis (MS) and rheumatoid arthritis (RA). Most likely immune-endocrine interactions play a major role in these pregnancy-induce effects. In this study, we used next generation sequencing to investigate the direct effects of P4 on CD4+ T cell activation, of central importance in pregnancy and disease. We found that P4 had a profound dampening effect on T cell activation, altering the gene and protein expression profile and opposing many of the changes induced during the activation. The transcriptomic changes induced by P4 were significantly enriched for genes associated with diseases known to be modulated during pregnancy such as MS, RA and psoriasis. The TH1-and TH17-associated transcription factors STAT1 and STAT3 were significantly downregulated by P4 and their downstream targets were significantly enriched among the diseases-associated genes. Several of these genes included well-known and disease-relevant cytokines, such as IL-12β, CXCL10 and OSM, that were further validated also at the protein level using proximity extension assay. Our results extend the previous knowledge of P4 as an immune regulatory hormone and supports its importance during pregnancy for regulating potentially detrimental immune responses towards the semi-allogenic fetus. Further, our results also point toward a potential role for P4 in the pregnancy-induced disease immunomodulation, suggestively through dampening of TH1 and TH17-associated immune responses and highlights the need for further studies evaluating P4 as a future treatment option.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3284-3284
Author(s):  
Ceri E Oldreive ◽  
Anna Skowronska ◽  
Angelo Agathanggelou ◽  
Helen M Parry ◽  
Sergey Krysov ◽  
...  

Abstract The interaction between chronic lymphocytic leukaemia (CLL) cells and T-cells is an important aspect of CLL biology. CLL cells require T-cell support for their proliferation and in addition induce proliferation of regulatory and cytotoxic (CD8+) T-cells. T-cell number and repertoire are both markedly affected by CLL therapy and there is considerable interest in how current treatments modulate the interaction between T-cells and the tumour clone. In this study we investigated whether this relationship was maintained in a xenotransplantation model. CLL engraftment in NOG mice was facilitated by humanisation of the murine microenvironment by allogeneic CD34+ umbilical cord cells or CD14+ monocytes. Accelerated engraftment of both CLL and T-cell compartments was observed in xenografts derived from patients with progressive CLL, suggesting that the biological properties of both subsets are maintained in the murine model. Furthermore, the distribution of helper (CD4+), cytotoxic (CD8+) and regulatory (CD4+CD25+FoxP3+) T-cells was maintained within the xenografts, including retention of the CD4:CD8 ratio. Interestingly, the anergic PD-1+CD160+CD244+TIM3+ T-cell phenotype reported in CLL patients was also evident in T-cells expanded in xenograft models. Consistent with an anergic T-cell phenotype, T-cells from CLL xenografts lacked anti-tumour activity in vitro. Importantly, such anergic cells were observed when T-cells were reconstituted from allogeneic cord blood cells as well as autologous cells, suggesting that CLL cells have the ability to shape T-cell populations of different origin in diverse microenvironments. Finally, to investigate the interaction between specific T-cell subsets and engrafted CLL cells, CD4+, CD8+, and CD25+ T-cells were depleted prior to generation of xenografts. CD8+ T-cell depletion significantly prolonged CLL engraftment (p≤0.01) whereas neither depletion of CD4+ nor CD25+cells had a significant impact. In summary, our results demonstrate that the relationship between CLL tumour cells and reactive T-cells is accurately maintained in a murine xenograft model. Such models will be of great value for investigation of aspects of T-cell function in CLL biology. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Ying Li ◽  
Anthony W. Frei ◽  
Ethan Y. Yang ◽  
Irayme Labrada-Miravet ◽  
Chuqiao Sun ◽  
...  

AbstractCell replacement therapy has the potential to cure diseases caused by the absence or malfunction of specialized cells. A substantial impediment to the success of any non-autologous cellular transplant is the need for systemic immunosuppressive drugs to prevent host-mediated rejection of the foreign cells. Cellular encapsulation, i.e., the entrapment of cells within stable polymeric hydrogels, has been clinically explored to prevent host immune recognition and attack, but the efficacy of these encapsulated grafts is poor. While several studies have explored improvements in innate immune acceptance of these encapsulated cells, little attention has been paid to the roles of adaptive immune responses, specifically graft-targeting T cell activation, in graft destabilization. Herein, we established an efficient, single-antigen in vitro platform capable of delineating direct and indirect host T cell recognition to microencapsulated cellular grafts and evaluating their consequential impacts. Using alginate as the model hydrogel, encapsulated membrane-bound ovalbumin (mOVA) stimulator cells were incubated with antigen-specific OTI lymphocytes and subsequent OVA-specific CD8+ T cell activation and effector function were quantified. We established that alginate microencapsulation abrogates direct T cell activation by interrupting donor-host interaction; however, indirect T cell activation mediated by host antigen presenting cells (APCs) primed with shed donor antigens still occurs. These activated T cells imparted cytotoxicity on the encapsulated cells, likely via diffusion of cytotoxic solutes. Overall, this platform delivers unique mechanistic insight into the impacts of hydrogel encapsulation on host adaptive immune responses, as well as a tool for the efficient immune screening on new encapsulation methods and/or synergistic immunomodulatory agents.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2711-2711
Author(s):  
Cesarina Giallongo ◽  
Nunziatina Parrinello ◽  
Daniele Tibullo ◽  
Piera La Cava ◽  
Alessandra Romano ◽  
...  

Abstract Introduction In some solid tumors it has been demonstrated that a subpopulation of myeloid cells, defined as “myeloid-derived suppressor cells” (MDSCs), plays an important role in inducing T cell tolerance by production of arginase 1 (arg1) that depletes microenvironment of arginine, an essential aminoacid for T cell function. Since chronic myeloid leukemia (CML) patients have high levels of immature myeloid cells it is of interest to investigate if these cells have MDSCs phenotype and activity. The aim of this study was to analyze MDSCs and investigate their activity in CML patients. Methods MDSCs were analyzed in peripheral blood (PB) of 20 healthy donors (HD) and 30 CML patients at diagnosis. In 21 patients MDSCs were also measured during TKI treatment. Granulocytic MDSCs (G-MDSCs) were identified as CD11b+CD33+CD14-HLADR- cells, while the monocytic MDSCs (Mo-MDSCs) as CD14+HLADR by cytofluorimetric analysis. Arg1 expression was assessed using real time PCR and Western Blot. Arg activity was measured in granulocyte lysates using a colorimetric test after enzymatic activation and arginine hydrolysis. Microvesicles (MV) were isolated from CML serum at diagnosis (n=5) by sequential ultracentrifugation. Results CML patients showed high levels of Mo- and G-MDSCs at diagnosis in comparison to HD (41±8 and 82,5±12,2% respectively for CML vs 9±2,1 and 55±5,3% for HD; p<0.001), while after TKIs therapy both subpopulations decreased, returning to normal values. T-reg (CD4+ CD25high Foxp3+ cells) were also significantly increased in CML patients at diagnosis in respect to HD (9±2% vs 6,1±0,8%, p<0.001) with a significant correlation with the percentage of Gr-MDSCs (r=0,6254; p<0.001). Both in PB and purified granulocytic cells, Arg1 expression showed a 30 fold increase in CML at diagnosis compared to HD (p<0.001) and decreased after therapy. The same data were confirmed by Western Blot analysis. Arg enzymatic activity in granulocytes resulted also increased in CML (n=10) compared to HD (n=10) (p<0.001). The suppressive function of CML G-MDSCs was demonstrated by their ability to inhibit the proliferation of CFSE+ HD T cells (p<0.001). In addition, an increase of Mo-MDSCs in vitro was observed after incubation of HD monocytes with CML sera (29±13%; p<0.0001) or MV (8±2,8%; p<0.05). Conclusions MDSCs are increased in CML patients at diagnosis and decrease during TKIs treatment. CML granulocytes have high arg1 activity and immunosuppressive activity. Moreover, CML serum as well as CML microvesicles increase the percentage of HD Mo-MDSCs. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document