Complement Component 3 (C3) Is Transcriptionally Regulated By TWIST1

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1046-1046 ◽  
Author(s):  
Min Soon Cho ◽  
Rajesha Rupaimoole ◽  
Anil Sood ◽  
Vahid Afshar-Kharghan

Abstract C3, a central component of the complement system, is a plasma protein that is synthesized in the liver. We have found that malignant epithelial cells are also able to synthesize and secrete C3. The regulation of expression of the C3 gene in malignant cells is not well understood. We found that C3 is highly expressed in various cancer cell lines (Cancer Cell Line Encyclopedia: CCLE) and cancerous human patient tissues (The Cancer Genome Atlas: TCGA). We then explored which transcription factors were responsible for regulating C3 gene expression in ovarian cancer cells. To determine C3 transcription factors, we performed a gene promoter analysis, which identified a TWIST1-binding consensus motif on the C3 gene promoter. The TWIST proteins (TWIST1 and TWIST2) are well known transcription factors are associated with more advanced, invasive and metastatic lesions. There is significant evidence suggesting that TWIST1 promotes tumor progression. To investigate whether TWIST1 is a transcription factor of C3 in human ovarian cancer cells, we performed a chromatin immunoprecipitation (ChIP) analysis and confirmed TWIST1 binding at the C3 promoter (Figure 1A,1B and 1c). The C3 promoter binding affinity is 5.83-fold higher in Twist antibody used pull down compared to the IgG control (n=3, p=0.001, t-test, Figure 1C). To investigate the functional effect of TWIST1 binding to C3 promoter, we performed a Luciferase reporter gene analysis, showing that a mutant TWIST1 binding site on the C3 promoter decreases luciferase reporter gene activity (control vs. C3 vs. mC3=1 vs. 3.3 vs.1.8, n=3, p=0.01, t-test, Figure 1D and 1E). Figure 1 C3 is a target gene of TWIST1. Figure 1. C3 is a target gene of TWIST1. Next, we manipulated expression of the Twist1 gene in ovarian cancer cells and monitored its effect on C3 gene expression. Small interfering RNAs (siRNA) against Twist1 drastically reduced C3 expression (n=3, p=0.01, t-test, Figure 1F); on the other hand, transducing these cells with lentivirus containing Twist1 increased C3 expression (n=3, p=0.01, t-test, Figure 1G). Therefore, we conclude that there is a positive correlation between expression of C3 and TWIST1 in ovarian cancer cells. Taken together, these data provide evidence that a novel transcription factor of C3, TWIST1, upregulates C3 expression in malignant cancer cells, leading to an increase in cell proliferative potential. Disclosures: No relevant conflicts of interest to declare.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhi-wei Qiao ◽  
Ying Jiang ◽  
Ling Wang ◽  
Lei Wang ◽  
Jing Jiang ◽  
...  

Abstract Background Dysregulation of long non-coding RNAs (lncRNAs) has been identified in ovarian cancer. However, the expression and biological functions of LINC00852 in ovarian cancer are not understood. Methods The expressions of LINC00852, miR-140-3p and AGTR1 mRNA in ovarian cancer tissues and cells were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. Gain- and loss-of-function assays were performed to explore the biological functions of LINC00852 and miR-140-3p in the progression of ovarian cancer in vitro. The bindings between LINC00852 and miR-140-3p were confirmed by luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. Results We found that LINC00852 expression was significantly up-regulated in ovarian cancer tissues and cells, whereas miR-140-3p expression was significantly down-regulated in ovarian cancer tissues. Functionally, LINC00852 knockdown inhibited the viability, proliferation and invasion of ovarian cancer cells, and promoted the apoptosis of ovarian cancer cells. Further investigation showed that LINC00852 interacted with miR-140-3p, and miR-140-3p overexpression suppressed the viability, proliferation and invasion of ovarian cancer cells. In addition, miR-140-3p interacted with AGTR1 and negatively regulated its level in ovarian cancer cells. Mechanistically, we found that LINC00852 acted as a ceRNA of miR-140-3p to promote AGTR1 expression and activate MEK/ERK/STAT3 pathway. Finally, LINC00852 knockdown inhibited the growth and invasion ovarian cancer in vivo. Conclusion LINC00852/miR-140-3p/AGTR1 is an important pathway to promote the proliferation and invasion of ovarian cancer.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huan Lu ◽  
Guanlin Zheng ◽  
Xiang Gao ◽  
Chanjuan Chen ◽  
Min Zhou ◽  
...  

Abstract Background Propofol is a kind of common intravenous anaesthetic agent that plays an anti-tumor role in a variety of cancers, including ovarian cancer. However, the working mechanism of Propofol in ovarian cancer needs further exploration. Methods The viability and metastasis of ovarian cancer cells were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays. Flow cytometry was used to evaluate the cell cycle and apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the abundance of circular RNA vacuolar protein sorting 13 homolog C (circVPS13C) and microRNA-145 (miR-145). The target relationship between miR-145 and circVPS13C was predicted by circinteractome database and verified by dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) assay and RNA-pull down assay. Western blot assay was used to detect the levels of phosphorylated extracellular regulated MAP kinase (p-ERK), ERK, p-MAP kinse-ERK kinase (p-MEK) and MEK, in ovarian cancer cells. Results Propofol treatment suppressed the viability, cell cycle and motility and elevated the apoptosis rate of ovarian cancer cells. Propofol up-regulated miR-145 in a dose-dependent manner. Propofol exerted an anti-tumor role partly through up-regulating miR-145. MiR-145 was a direct target of circVPS13C. Propofol suppressed the progression of ovarian cancer through up-regulating miR-145 via suppressing circVPS13C. Propofol functioned through circVPS13C/miR-145/MEK/ERK signaling in ovarian cancer cells. Conclusion Propofol suppressed the proliferation, cell cycle, migration and invasion and induced the apoptosis of ovarian cancer cells through circVPS13C/miR-145/MEK/ERK signaling in vitro.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qingjuan Meng ◽  
Ningning Wang ◽  
Guanglan Duan

Abstract Background X inactivation-specific transcript (XIST) is the long non-coding RNA (lncRNA) related to cancer, which is involved in the development and progression of various types of tumor. However, up to now, the exact role and molecular mechanism of XIST in the progression of ovarian cancer are not clear. We studied the function of XIST in ovarian cancer cells and clinical tumor specimens. Methods RT-qPCR was performed to detect the expression levels of miR-335 and BCL2L2 in ovarian cancer cells and tissues. MTT and transwell assays were carried out to detect cell proliferation, migration, and invasion abilities. Western blot was performed to analyze the expression level of BCL2L2. The interaction between miR-335 and XIST/BCL2L2 was confirmed using a luciferase reporter assay. Results The inhibition of XIST can inhibit the proliferation invasion and migration of human ovarian cancer cells. In addition, the miR-335/BCL2L2 axis was involved in the functions of XIST in ovarian cancer cells. These results suggested that XIST could regulate tumor proliferation and invasion and migration via modulating miR-335/BCL2L2. Conclusion XIST might be a carcinogenic lncRNA in ovarian cancer by regulating miR-335, and it can serve as a therapeutic target in human ovarian cancer.


2020 ◽  
Author(s):  
Shenglan Wang ◽  
Chuanchuan Liu ◽  
Yongchuan Li ◽  
Jinwan Qiao ◽  
Xinling Chen ◽  
...  

Abstract Objectives: The purpose of this study was to investigate the expression and clinical significance of LncRNA OIP5-AS1 in ovarian cancer , as well as its effect on malignant biological behavior of ovarian cancer cells. Methods: The expression of OIP5-AS1, miR-153-3p and KLF5 in ovarian cancer (OC) tissues and cells were detected by RT-qPCR. Western Blotting was used to detect KLF5 expression. The expression patterns of OIP5-AS1, U6 and GAPDH in nuclear and cytoplasm fractions were detected using qRT-PCR. Besides, CCK-8 assay, clone formation assay, transwell, scratch test, and flow cytometry were respectively used to detect the cell activity, proliferation, invasiveness, healing of cells, and apoptosis rate of OC cells. Furthermore, The interaction between OIP5-AS1 and miR-153-3p and between miR-153-3p and KLF5 were verified by luciferase reporter assay, and the correlations among these three genes were analyzed.Results: OIP5-AS1 expression was up-regulated in ovarian cancer cell lines and tissues. Si-OIP5-AS1 inhibited cell proliferation, invasion and migration, and induced the apoptosis to a certain extent. Subcellular fraction assay revealed the location of OIP5-AS1 was mainly situated in the cytoplasm. In addition, miR-153-3p was a target of OIP5-AS1, and KLF5 was directly targeted by miR-153-3p. Si-OIP5-AS1 inhibited KLF5 expression, miR-153-3p inhibitor promoted KLF5 expression, and si-KLF5 inhibited OIP5-AS1 expression. Interestingly, expression of OIP5-AS1 and miR-153-3p, and expression of miR-153-3p and KLF5 were negatively correlated, while expression of OIP5-AS1 and KLF5 was positively correlated. In addition, si-KLF5 inhibited the malignant biological behavior of ovarian cancer cells, while miR-153-3p inhibitor had the opposite effect. Most importantly, the addition of si-OIP5-AS1 to mir-153-3p silenced cells could reverse the promotion effect of miR-153-3p inhibitor on the malignant biological behavior of ovarian cancer cells.Conclusions: OIP5-AS1 can be used as an effective prognostic indicator of ovarian cancer, which has the potential to be a new drug target.


2020 ◽  
Author(s):  
Nan Zhang ◽  
Yue Jin ◽  
Qiubo Hu ◽  
Shanshan Cheng ◽  
Chao Wang ◽  
...  

Abstract Background: Increasing researches have demonstrated the critical functions of circular RNAs (circRNAs) in the progression of malignant tumors, including ovarian cancer. In this study, we aim to investigate abnormally expression of hsa_circ_0078607 and the role of hsa_circ_0078607 during ovarian cancer pathogenesis.Methods: RT-PCR were used to detect the expression of circ_0078607 in ovarian cancer tissues. To determine the functional roles of circ_0078607 in ovarian cancer, cell proliferation and cell invasion assays were performed. Bioinformatics and luciferase reporter analysis were used to predict the target of circ_0078607.Results: In the present study, we first found that circ_0078607 was downregulated in ovarian cancer. Forced circ_0078607 expression significantly suppressed proliferation and promotes apoptosis of ovarian cancer cells. Mechanically, bioinformatics and luciferase reporter analysis identified that miR-518a-5p as a direct target of circ_0078607, while Fas as a direct target of miR-518a-5p. MiR-518a-5p negatively regulates Fas in ovarian cancer cells, while overexpression of circ_0078607 could increase the expression of Fas inhibited by miR-518a-5p. Furthermore, overexpression of circ_0078607 could inhibit the proliferation and invasion of ovarian cancer cells caused by miR-518a-5p mimic.Conclusion: The results of the present study revealed that circ_0078607 suppresses ovarian cancer progression by sponging oncogenic miR-518a-5p to induce Fas expression, which may provide new therapeutic approach for ovarian cancer.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
So Young Yoon ◽  
Soo Jung Park ◽  
Yoon Jung Park

Abstract Objectives The study was aimed to determine anticancer effects of Cordyceps militaris extract (CME) and its major bioactive compound, cordycepin, in human ovarian cancer cells, and to identify their putative molecular mechanism mediated by adenosine receptors (ADORAs). Methods CME was prepared in 50% ethanol solution. LC-MS was used for quantification and Q-TOF MS for qualifying bioactive compounds in CME. MTT assay was performed for cell viability in A2780, SKOV-3, TOV112D, and OVCAR-3 human ovarian cancer cell lines. cAMP response element (CRE)-luciferase reporter gene assays were used to determine whether antitumorigenic effect of CME/cordycepin is based on adenosine derivatives. Additionally, the involvement of ADORA signaling pathway was measured using with ADORA2A antagonist SCH 58261 and ADORA2B antagonist PSB 603. Results Cordycepin concentrations of CME was 21.8%. CME was effective to reduce cell viability in A2780 and OVCAR-3 with IC50 115.2 μg/ml and 155.94 μg/ml respectively, while SKOV-3 and TOV112D were relatively resistant to CME. cAMP production was significantly increased by treatment with cordycepin and, lesser extent, with CME. Among the four types of ADORAs, ADORA2A and 2B showed relatively higher expression levels in ovarian cancer cells. The cAMP production by CME was ameliorated by PSB 603, not SCH 58261, treatment. Conclusions CME and cordycepin have anticancer effects in human ovarian cancer cells via ADORA2B-cAMP pathway. Funding Sources NRF of Korea (2017R1D1A1B03034936 & 22A20130012143) and Health Fellowship Foundation.


2017 ◽  
Vol 41 (3) ◽  
pp. 973-986 ◽  
Author(s):  
Xi Han ◽  
Shuai Zhen ◽  
Zhongxue Ye ◽  
Jiaojiao Lu ◽  
Lijie Wang ◽  
...  

Background: Many microRNAs (miRs) are dysregulated in cancers, and aberrant miR expression patterns have been suggested to correlate with chemo-resistance of cancer cells. We aim to study the role of miR-30 family members in cisplatin-resistance of ovarian cancer cells. Methods: qRT-PCR was used to compare differential expression levels of miR-30 family members in ovarian cancer cell line A2780 and its cisplatin-resistant derivative CP70. Changes of cisplatin-sensitivity in miR-30a-5p- and miR-30c-5p-overexpressed-CP70 cells and miR-30a-5p- and miR-30c-5p-inhibited-A2780 cells were examined by CCK8 assay and apoptosis analysis using flow cytometry; targets of miR-30a/c-5p were analyzed by western blotting and luciferase reporter assay; methylation regulation of pre-miR-30a/c-5p was examined by methylation specific PCR. Results: miR-30a-5p and miR-30c-5p, in contrast to other miR-30 family members, dramatically decreased in cisplatin-resistant CP70 cells due to overexpressed-DNMT1 induced aberrant methylation. miR-30a/c-5p in turn directly inhibited DNMT1 as well as Snail. Forced expression of miR-30a/c-5p or knocking down of DNMT1 and Snail promoted cisplatin susceptibility and partially reversed epithelial-mesenchymal transition (EMT) in CP70 cells, while inhibition of miR-30a/c-5p or ectopic expression of DNMT1 and Snail induced cisplatin resistance and partial EMT in cisplatin-sensitive A2780 cells. Conclusions: A feedback loop between miR-30a/c-5p and DNMT1 is a potent signature for cisplatin-resistance and EMT in ovarian cancer, promising a potential target for improved anti-cancer treatment.


2020 ◽  
Vol 52 (3) ◽  
pp. 798-814 ◽  
Author(s):  
De-Ying Wang ◽  
Na Li ◽  
Yu-Lan Cui

PurposeColon cancer-associated transcript 1 (CCAT1) was identified as an oncogenic long non-coding RNA (lncRNA) in a variety of cancers. However, there was a lack of understanding of the mechanism by which CCAT1 conferred cisplatin (also known as DDP) resistance in ovarian cancer cells.Materials and MethodsCell viability of A2780, SKOV3, A2780/DDP, and SKOV3/DDP cells upon cisplatin treatment was monitored by MTT assay. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) detected the expression levels of CCAT1 and miR-454. The effect of sh-CCAT1 on cisplatin response was investigated in xenografts study. Bioinformatic analysis, luciferase reporter assay and qRT-PCR were conducted to validate the direct interaction among CCAT1, miR-454, and survivin. Apoptosis was determined by flow cytometry after dual staining of Annexin-V-FITC/propidium iodide, and the expression of apoptosis-related proteins Bcl-2, Bax and survivin were detected by qRT-PCR and Western blotting. Xenograft study was conducted to monitor <i>in vivo</i> tumor formation.ResultsCCAT1 was highly expressed in cisplatin-resistant ovarian cancer cell line A2780/DDP and SKOV3/DDP. Knockdown of CCAT1 restored sensitivity to cisplatin <i>in vitro</i> and <i>in vivo</i>. Our data revealed that silencing of CCAT1 promoted cisplatin-induced apoptosis via modulating the expression of pro- or anti-apoptotic proteins Bax, Bcl-2, and survivin. CCAT1 directly interacted with miR-454, and miR-454 overexpression potentiated cisplatin-induced apoptosis. Survivin was identified as a functional target of miR-454, restoration of survivin attenuated the effect of miR-454 on cisplatin response. In addition, miR-454 inhibitor or overexpression of survivin was found to abolish sh-CCAT1–induced apoptosis upon cisplatin treatment.ConclusionCCAT1/miR-454/survivin axis conferred cisplatin resistance in ovarian cancer cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lei Dou ◽  
Yi Zhang

microRNAs (miRNAs) are of great significance in cancer treatment, which may have a desirable result on the regulation of tumorigenesis, progression, recurrence, and chemo-resistance of ovarian cancer. However, the research on the further potential application of miR-4461 in ovarian cancer is little and limited. Therefore, the study in this paper focus on the investigation of the of miR-4461 in ovarian cancer progression and chemo-resistance. The phenomenon that the proliferation and metastasis of ovarian cancer cells can be promoted by miR4461 is revealed in functional assays. Through the bioinformatics and luciferase reporter analysis, the PTEN is validated to be the direct target of miR-4461 in ovarian. The association between the expression of miR-4461 and PTEN is negative in in human ovarian cancer tissues. The distinction of growth and metastasis capacity between miR-4461 knockdown ovarian cancer cells and control cells is partially abolished by si-PTEN. Moreover, it was found that cisplatin treatment has obvious effect on the miR-4461 knockdown ovarian cancer cells. In summary, the data given in this paper indicate that the miR-4461 can be regarded as a potential onco-miRNA in ovarian cancer by targeting PTEN.


Sign in / Sign up

Export Citation Format

Share Document