IL-15 Primes a Highly Potent Anti-Leukemia Response By CD56bright NK Cells

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2283-2283 ◽  
Author(s):  
Rizwan Romee ◽  
Jeffrey W Leong ◽  
Stephanie E Schneider ◽  
Ryan P Sullivan ◽  
Todd A. Fehniger

Abstract Background NK cells are innate lymphocytes that are important for host defense against infections, and are potent anti-cancer immune effectors. In peripheral blood, human NK cells are categorized into developmentally related, but functionally distinct, subsets. CD56dim NK cells, thought to be developmentally more mature, are the major subset in peripheral blood (80-95%), express perforin and granzyme B at rest and exhibit degranulation, cytotoxicity and IFN-γ responses against tumor targets without prior stimulation. In contrast, CD56bright NK cells, are less mature, are the major subset in secondary lymphoid tissues, lack expression of perforin and granzyme B and are associated with minimal degranulation, cytotoxicity, and IFN-γ responses to tumor targets. IL-15 has been shown to support the survival and proliferation of CD56bright NK cells, but its impact on the anti-leukemia response has not been reported. Here we investigate the impact of brief exposure to human recombinant IL-15 on functional responses of CD56bright and CD56dim NK cells to leukemia target cells including primary AML blasts. Methods Normal human donor NK cells (>95% purity) were cultured with cytokine free media (control) or with 5 ng/ml of rhIL-15 (primed) for 16 hours, washed and then tested for functional responses after co-incubation with K562 cells or primary AML blasts for 6 hours. NK cell functional responses assessed include degranulation, cytokine production and cytotoxicity (using flow based killing assays). For the tumor:nk cell conjugate analyses, pre-stained NK cells were co-incubated with CFSE labeled K562 cells and then CD56bright conjugate formation assessed by gating on CFSE+CD56+CD16- cells. Results Anti-leukemia effector functions of human NK cells are classically attributed to the CD56dim subset, however after priming for 16 hours with rhIL-15 (5 ng/mL, a concentration that stimulates via the IL-2/15Rβγc), surprisingly, we observed that IL-15-primed CD56bright NK cells exhibited significantly greater degranulation (CD107a), cytokine (IFN-γ and TNF-α) and cytotoxic responses to both K562 leukemia cells (Figure 1) and to primary AML blasts (figure 2), compared to IL-15 primed CD56dim NK cells from the same donor. Further, we found a marked increase in the expression of perforin (70 ± 5% vs. 12 ± 6%, P< 0.0001), granzyme B (64 ± 5% vs. 12 ± 2.5%, P< 0.0001), and TRAIL (89 ± 2.5% vs. 6 ± 1%, P< 0.0001) in IL-15 primed CD56bright NK cells. We found an increased number of tumor conjugates with the IL-15 primed, compared to control, CD56bright cells at 5 minutes (19 ± 3% vs. 3.5 ± 1%, P= 0.02), 15 minutes (22 ± 3% vs. 8 ± 2%, P= 0.0003) or at 30 minutes (13 ± 2% vs. 3.5 ± 1%, P= 0.008) from the same donors. Further, there was a significant increase in the expression of NKG2D (MFI of 8.5 ± 2 vs. 3 ± 0.5, P= 0.03), NKp30 (65 ± 4% vs. 21 ± 3%, P< 0.0001), NKp44 (57 ± 3% vs. 15 ± 3%, P< 0.0001), CD2 (MFI of 25 ± 1.5 vs. 13 ± 1, P=0.004) and LFA-1/CD11a (MFI of 45 ± 1 vs. 29 ± 2, P=0.006) in the IL-15 primed CD56bright NK cells. Due to their known role in activating anti-tumor target responses by NK cells, NKG2D, NKp44, NKp30, CD2, and LFA-1 were evaluated for a non-redundant contribution to the anti-leukemia response of IL-15 primed CD56bright NK cells. Simultaneous blockade of these receptors caused almost complete abrogation of the enhanced anti-leukemic response by the IL-15 primed CD56bright NK cells (Figure 3). Conclusions CD56bright NK cells are traditionally considered to poorly respond to leukemia targets. Here we show that stimulation with IL-15 for a few hours markedly enhances their anti-leukemia properties including degranulation and cytotoxicity, as well as IFN-γ and TNF-α production, to a level significantly exceeding CD56dim NK cells. These functional enhancements are explained by multiple mechanisms, including increased cytotoxic effector proteins (perforin, granzyme B, TRAIL), improved leukemia cell conjugation, and enhanced activation requiring LFA-1, CD2 and NKG2D. These results suggest that CD56bright NK cells may play an under-appreciated anti-tumor role in settings of abundant IL-15, such as following lymphodepleting chemotherapy, preparation for stem cell transplantation, or exogenous IL-15 administration. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1059-1059
Author(s):  
Sajin Rajbhandary ◽  
Mingfeng Zhao ◽  
Nan Zhao ◽  
Wenyi Lu ◽  
Haibo Zhu ◽  
...  

Abstract Abstract 1059 Adoptive transfer of activated T and NK cells has had significant clinical benefits in certain tumor models. Cytokine induced killer (CIK) cells are a group of cells that possess both T and NK cell like recognition of target cells. These cells are generated after extensive ex vivo manipulation of PBMCs. Maintenance of not only CIK cells but other activated effector T and NK cells in culture is vital for their effective transfer and development following adoptive immunotherapy. IL-21 is the newest member of the common γ chain family which has been shown to increase cytotoxic factors and cytokine secretion in immune cells without over stimulation. Such qualities make IL-21 a suitable agent in immunotherapy of tumors. IL-21 has shown effective antitumor function and is currently going clinical trials for tumors such as renal cell carcinoma, melanoma and lymphoma. Our previous experiment showed that like in T cells and NK cells, IL-21 significantly improves the cytotoxicity of CIK cell on K562 cells and primary leukemic cells from patients. Although proliferation of cells in a CIK cell pool was not observed we found that it helped maintain and grow the CD3+ and CD56+ phenotype. Our present experiment aims to explain the mechanism through which IL-21 promotes CIK cells survival and cell cytotoxicity. In our experiment, blood from healthy donors was collected and PBMCs were transformed into CIK cells following 14 days of culture using appropriate methods. The cells were then stimulated with IL-21 for a defined period of time and subjected to MTT assays to measure cellular viability and cytotoxicity to K562 cells. To elucidate the mechanism of action of IL-21, CIK cells were checked for the level of mRNA expression of perforin, Granzyme B, FasL, INF-γ, TNF-α,Granzyme A,NKG2D, TNF-β using RT-PCR. Furthermore the expression of significantly important cytotoxic factors and cytokines was measured through flow cytometry and ELISA. Western blot was performed to check the involvement of JAK/STAT pathway following stimulation. We found that IL-21 doesn't enhance in vitro proliferation of CIK cells, but does increase the number of cells expressing the CD3+/CD56+ phenotype. IL-21 can also significantly increase the cytotoxic potential of CIK cells to K562 cells. It does so with significantly increased production of perforin which increased almost 2 folds from (0.5592±0.1457) to (0.9831±0.1265); Granzyme B also by almost 2 folds from (0.4084±0.1589) to (0.7319±0.1639) and FasL which increased by almost 2 folds from (0.4015±0.2842) to (0.7381±0.2568). Increase in secretion of cytokines such as INF-γ was observed from (25.8±6.1)ng/L to (56.0±2.3)ng/L; and TNF-α from (5.64±0.61)ug/L to (15.14±0.93)ug/L while no significant difference was observed in the expression of Granzyme A,TNF-β and NKG2D. Measurement of IL-21R receptor on CIK cell surface following IL-21 stimulation caused a more than two folds increase in expression of IL-21R from 1.88% to 4.25%. We further affirm that JAK/STAT is actively involved in IL-21 signalling. STAT3 and STAT5b could be potential signalling mechanisms taking part in IL-21 enhanced cytotoxic potential of CIK cells. Using this information we have concluded that increased expression of perforin, Granzyme B, FasL, IFN-γ and TNF-α plays a significant role in IL-21 enhanced cytotoxic potential of CIK cells and STAT-3 and STAT-5b signaling pathway are involved in the processes. Our data indicate that IL-21 is a potent enhancer of antitumor function of CIK cells. As CIK cells and IL-21 have both been shown to increase patient survival or tumor free periods in certain hematological malignancies using them in conjunction might be therapeutically more beneficial. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
R. Muharam ◽  
Ririn Rahmala Febri ◽  
Kevin Ardito Prabowo ◽  
Arleni Bustami ◽  
Indra G. Mansur

It has been postulated that the immune system is impaired in individuals with endometriosis, with attention directed to natural killer (NK) cells. Specifically, it has been hypothesized that altered numbers of peripheral NK cells in blood are associated with the presence of endometriotic lesions. This study aimed to evaluate the level of the peripheral NK cell surface marker CD107a in endometriosis in the presence of IL-2 stimulation. Peripheral blood mononuclear cells (PBMCs) were obtained from 7 women with endometriosis and 7 women without endometriosis. The PBMCs were divided into two groups and either treated with recombinant IL-2 or left untreated. The cytotoxic activity of the PBMCs toward target cells (K562) was evaluated. Then, both groups were cocultured for 4 days. The expressions of CD107a, TNF-α, and IFN-γ were determined using flow cytometry analysis. There was no difference in the expression of CD107a prior to IL-2 stimulation in PBMCs from women with endometriosis compared to those from women without endometriosis. However, we observed upregulation of the expression of the surface marker CD107a after treatment in the endometriosis group. In addition, there was a significant difference in CD107a expression in the endometriosis group before versus after stimulation with IL-2 ( p  < 0.01). We also found no difference in the production of TNF-α and IFN-γ before versus after treatment with IL-2 in either groups. The levels of CD107a were significantly enhanced in peripheral blood taken from women with endometriosis after treatment with IL-2.


Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3183-3190 ◽  
Author(s):  
Kathy S. Wang ◽  
David A. Frank ◽  
Jerome Ritz

Interleukin (IL)-12 plays a critical role in modulating the activities of natural killer (NK) cells and T lymphocytes. In animal models, IL-12 has potent antitumor effects that are likely mediated by its ability to enhance the cytotoxic activity of NK cells and cytotoxic T lymphocytes, and to induce the production of interferon (IFN)-γ by NK and T cells. In addition to IL-12, NK cells are responsive to IL-2, and may mediate some of the antitumor effects of IL-2. In this study, we examine the interaction between IL-2 and the signaling events induced by IL-12 in NK cells. We find that IL-2 not only up-regulates the expression of IL-12Rβ1 and IL-12Rβ2, it also plays an important role in up-regulating and maintaining the expression of STAT4, a critical STAT protein involved in IL-12 signaling in NK cells. In contrast to the effects of IL-2 alone, expression of IL-12 receptors and STAT4 are unaffected or decreased by IL-12 or the combination of IL-2 and IL-12. Through expression of high levels of IL-12 receptors and STAT4, IL-2–primed NK cells show enhanced functional responses to IL-12 as measured by IFN-γ production and the killing of target cells. NK cells from cancer patients who received low-dose IL-2 treatment also exhibited increased expression of IL-12 receptor chains, suggesting that IL-2 may enhance the response to IL-12 in vivo. These findings provide a molecular framework to understand the interaction between IL-2 and IL-12 in NK cells, and suggest strategies for improving the effectiveness of these cytokines in the immunotherapy of cancer.


2017 ◽  
Vol 9 (5) ◽  
pp. 511-525 ◽  
Author(s):  
Sophie M. Poznanski ◽  
Amanda J. Lee ◽  
Tina Nham ◽  
Evan Lusty ◽  
Margaret J. Larché ◽  
...  

The combination of interleukin (IL)-18 and IL-12 (IL-18+IL-12) potently stimulates natural killer (NK) cells, triggering an innate immune response to infections and cancers. Strategies exploiting the effects of IL-18+IL-12 have shown promise for cancer immunotherapy. However, studies have primarily characterized the NK cell response to IL-18+IL-12 in terms of interferon (IFN)-γ production, with little focus on other cytokines produced. IL-8 plays a critical role in activating and recruiting immune cells, but it also has tumor-promoting functions. IL-8 is classically produced by regulatory NK cells; however, cytotoxic NK cells do not typically produce IL-8. In this study, we uncover that stimulation with IL-18+IL-12 induces high levels of IL-8 production by ex vivo expanded and freshly isolated NK cells and NK cells in peripheral blood mononuclear cells. We further report that tumor necrosis factor (TNF)-α, produced by NK cells following IL-18+IL-12 stimulation, regulates IL-8 production. The IL-8 produced is in turn required for maximal IFN-γ and TNF-α production. These findings may have important implications for the immune response to infections and cancer immunotherapies. This study broadens our understanding of NK cell function and IL-18+IL-12 synergy by uncovering an unprecedented ability of IL-18+IL-12-activated peripheral blood NK cells to produce elevated levels of IL-8 and identifying the requirement for intermediates induced by IL-18+IL-12 for maximal cytokine production following stimulation.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5250-5250 ◽  
Author(s):  
Bei Jia ◽  
Chenchen Zhao ◽  
David F. Claxton ◽  
W. Christopher Ehmann ◽  
Witold B. Rybka ◽  
...  

Abstract Natural killer (NK) cells are essential innate immune effectors with promising anti-leukemia activity in acute myeloid leukemia (AML). However, clinical success of applying NK cells in AML treatment has not been achieved. A better understanding of the regulatory mechanisms for NK cell function is important to optimize this therapeutic strategy. T cell immunoglobulin and ITIM domain (TIGIT) is a recently identified inhibitory receptor expressed on T cells and NK cells. Multiple studies including ours have demonstrated its suppressive effect in anti-tumor CD8 T cell response. However whether and how TIGIT impacts NK cells in AML is unknown. Here we performed phenotypic and functional studies on NK cells derived from patients with newly diagnosed AML (n=30). Cells collected from healthy individuals (n=18) were used as controls. TIGIT expression and their contributions to NK cell function in AML were assessed. Peripheral blood samples were first examined by flow cytometry for the frequency of NK cells (defined as CD56+CD3-). The percentage of NK cells among peripheral blood mononuclear cells (PBMCs) in AML patients is comparable with that of healthy controls. In contrast, when we performed functional analysis to assess NK cells for cytokine release upon in vitro stimulation with a human leukemia cell line K562, we observed significantly lower intracellular production of IFN-γ in cells from AML patients compared with that of healthy controls. Consistently NK cells from AML patients expressed less Perforin, indicating a compromised killing capacity. We next evaluated the expression of TIGIT on CD56+CD3- NK cells. As some AML blasts and monocytes also express CD56, we performed multichannel flow cytometry and carefully gated out other cell components when assessing TIGIT expression. To our surprise, we observed a significantly lower frequency of TIGIT-expressing NK cells in AML compared with that of healthy controls (36.82 ±4.543% vs. 48.9±3.818%, P=0.0463). This data indicated that low-TIGIT expression associates with impaired NK cell function and AML progression. We further examined the phenotype and functional status of TIGIT+ NK cells. Expression of activating receptors (CD16 and CD160) and inhibiting receptors (KIR and NKG2A) on TIGIT+ vs. TIGIT- NK cells were analyzed. We observed a significant higher expression of CD16 (51.27±9.009% vs. 20.63±5.334%, P=0.0001) and CD160 (39.84±6.447% vs. 21.24±4.287%, P=0.0103) on TIGIT+ NK cells compared with that of TIGIT- NK cells. By contrast, TIGIT+ NK cells expressed lower KIR (24.06±3.796% vs. 43.59±6.96%, P=0.0046) and NKG2A (7.658±1.717% vs. 18.68±4.256%, P=0.0167) than TIGIT- NK cells. Importantly, functional studies demonstrated an elevated expression of Granzyme B and increased cytokine (IFN-γ and TNF-α) production by TIGIT+ NK cells compared with TIGIT- NK cells (IFN-γ, P=0.0283; TNF-α P=0.0347; Granzyme B, P=0.0493). These data suggest that TIGIT expression on NK cells associated with activated and high functional status. Collectively, our study demonstrates that 1) in line with lower capacity to produce IFN-γ, NK cells from AML patients express less frequency of TIGIT compared with healthy individuals; 2) TIGIT+ NK cells from AML patients express high levels of activating receptors and are highly functional manifested by more cytokine production and enhanced expression of Granzyme B compared with TIGIT- NK cells. These results indicate that in AML patient, TIGIT may contribute to the upregulation of NK cell function. This is in contrast to the observations of CD8 T cells in which TIGIT plays a suppressive role. Targeting TIGIT for cancer treatment is currently under active development. Our findings bring a call for caution on the TIGIT-targeted therapeutic strategy in AML as TIGIT might be a double-edged sword in anti-leukemia immune regulation. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 49 (5) ◽  
pp. 78-86
Author(s):  
Bayindala ◽  
He Huang ◽  
Song Gao ◽  
Xinjian Xu

Alveolar echinococcosis (AE) is a malignant and fatal parasitic disease caused by the larvae of Echinococcus multilocularis (E. multilocularis), which inhibits the activity and proliferation of natural killer (NK) cells. In this study, the functional alteration of hepatic NK cells and their related molecules were studied. The AE-infected patient’s tissue was fixed with formalin, embedded in paraffin, and stained with Masson’s trichrome or hematoxylin and eosin (H&E). Single cells from AE-infected patient or E. multilocularis-infected mice were blocked with Fc-receptor (FcR), and stained with monoclonal antibodies, including CD16, CD56, CD3, KIR2DL1, granzyme B, perforin, Interferon gamma (IFN-γ), and tumor necrosis factor-α (TNF- α) or isotype control, to measure molecules and cytokines of NK cells and analyzed by flow cytometry. The Sirius red staining was used to quantitate hepatic fibrosis by calculating quantitative collagen deposition. AE can adjust both the number of hepatic CD56+ NK cells andits KIR2DL1 expression processes. Moreover, the overexpression of KIR2DL1 in NK cells could downregulate the functioning of immune cells in the liver area close to parasitic lesions. The number and dysfunction of NK cells in E. multilocularis infection could be related to the molecule dynamics of cell surface inhibitory receptor Ly49A, leading to hepatic damage and progression of fibrosis. This study illustrated significant increase in hepatic fibrogenesisand apparent upregulation of hepatic CD56+ NK cell population and its KIR2DL1 expression in AE-infected patients. This opposite variation might be related to the impaired NK cells functioning, such as granzyme B, IFN-γ, and TNF-α secretion. In addition, the cell surface inhibitory receptor Ly49A was related to the intracellular cytokine secretion functions of NK cells.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3430-3430
Author(s):  
Sebastien Viel ◽  
Laurie Besson ◽  
Emily Charrier ◽  
Jacques Bienvenu ◽  
Emmanuel Disse ◽  
...  

Abstract The impact of adiposity on the immune system remains largely unexplored. While obesity has been suggested to be a predisposing or adverse prognostic factor in certain neoplastic diseases it is not yet clear to what extent this may involve the innate or adaptative immune systems. Adipose tissue produces a large number of secreted molecules, or adipocytokines, which may have immunomodulatory functions. This project aimed to determine whether phenotypical and/or functional properties of circulating natural killer (NK) cells were influenced by body mass index (BMI). In a preliminary study, 47 patients with no history of hematological malignancy were included, including 14 healthy volunteers with a normal BMI (18.5-25), 10 patients considered to be overweight (25 < BMI < 30), 11 patients considered as obese (BMI > 30) and 12 patients who were previously obese and had lost weight. Peripheral blood was analyzed by flow cytometry for the following markers: activating receptors (CD16, C161, DNAM-1, 2B4, NKG2C, NKG2D, NKp46, NKp30), inhibitor receptors (NKG2A, KIR2DL1, KIR2DL2, KIR3DL1), activation markers (CD69, granzyme B, NKG2C), maturation markers (CD56, CD57, CD94, CX3CR1) and cytotoxicity markers (perforin, NKG7). Moreover the capacity of NK cells to degranulate and to produce several cytokines (TNF, IFN-g) or chemokines (MIP1-b) in response to stimulation by K562 cells or Rituximab coated -tumor B cells was evaluated. Results showed a positive correlation between BMI and total number of circulating NK cells, with a significant difference between lean patients and obese patients. Immunophenotypic analyses showed that NKp46 and CD94 expression (measured by Mean Fluorescence Intensity) were both significantly reduced with increased BMI. NK cells from obese patients also show signs of activation, characterized by an elevation of the expression of CD69 and granzyme B and a reduction of the expression of CD16. The ability of NK cells to be activated in the presence of cell lines was also reduced in obese patients: NK cell secretion of IFN-g and MIP-1b in the presence of Granta cells or MIP-1b in the presence of K562 decreased linearly with increasing BMI. NK cell degranulation upon co-culture with K562 cells was also negatively correlated with BMI. In these different assays pre-obese and ex-obese patients scored intermediate between lean and obese patients. Overall these results suggest in vivo activation and exhaustion of NK cells in obese patients. These cells are thus potentially less likely to participate as effector cells in immunotherapeutic regimens. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3183-3190 ◽  
Author(s):  
Kathy S. Wang ◽  
David A. Frank ◽  
Jerome Ritz

Abstract Interleukin (IL)-12 plays a critical role in modulating the activities of natural killer (NK) cells and T lymphocytes. In animal models, IL-12 has potent antitumor effects that are likely mediated by its ability to enhance the cytotoxic activity of NK cells and cytotoxic T lymphocytes, and to induce the production of interferon (IFN)-γ by NK and T cells. In addition to IL-12, NK cells are responsive to IL-2, and may mediate some of the antitumor effects of IL-2. In this study, we examine the interaction between IL-2 and the signaling events induced by IL-12 in NK cells. We find that IL-2 not only up-regulates the expression of IL-12Rβ1 and IL-12Rβ2, it also plays an important role in up-regulating and maintaining the expression of STAT4, a critical STAT protein involved in IL-12 signaling in NK cells. In contrast to the effects of IL-2 alone, expression of IL-12 receptors and STAT4 are unaffected or decreased by IL-12 or the combination of IL-2 and IL-12. Through expression of high levels of IL-12 receptors and STAT4, IL-2–primed NK cells show enhanced functional responses to IL-12 as measured by IFN-γ production and the killing of target cells. NK cells from cancer patients who received low-dose IL-2 treatment also exhibited increased expression of IL-12 receptor chains, suggesting that IL-2 may enhance the response to IL-12 in vivo. These findings provide a molecular framework to understand the interaction between IL-2 and IL-12 in NK cells, and suggest strategies for improving the effectiveness of these cytokines in the immunotherapy of cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Lu ◽  
Kun Sun ◽  
Huiping Yang ◽  
Dan Fan ◽  
He Huang ◽  
...  

BackgroundSepsis is a complex systemic immune dysfunction syndrome induced by infection. Sepsis has a high mortality rate, with most patients dying due to systemic organ failure or secondary infection. Dendritic cells (DCs) are professional antigen-presenting cells. Upon infection with microbes, DCs are activated to induce adaptive immune responses for controlling infection. DC generation and function are impaired during sepsis; however, the underlying mechanisms remain largely unknown.MethodsPeripheral blood samples from sepsis patients were collected to examine DC subsets, DC progenitors, and apoptosis of DCs by flow cytometer. In vitro induction of DCs from hematopoietic stem/progenitor cells were established and a variety of sepsis-associated inflammatory mediators [e.g., interferon-gamma (IFN-γ), interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and granulocyte-colony stimulating factor (G-CSF)] and Lipopolysaccharide (LPS) were determined for the impact on DC generation and function in vitro.ResultsOur results demonstrate that sepsis-induced systemic inflammation impairs the capacity of hematopoietic stem and progenitor cells (HSPCs) to produce DCs, including conventional DCs (cDCs) and plasmacytoid DCs (pDCs). We investigated peripheral blood (PB) samples from 34 pediatric patients on days 1 to 7 following diagnosis. Compared to healthy donors (n = 18), the sepsis patients exhibited a significantly fewer percentage and number of pDCs and cDCs, and a lower expression of antigen presenting molecule HLD-DR and co-stimulatory molecules (e.g., CD86) on the surface of DCs. This sepsis-induced DC impairment was associated with significantly increased apoptotic death of DCs and marked decreases of progenitor cells that give rise to DCs. Furthermore, we observed that among the tested sepsis-associated cytokines (e.g., IFN-γ, IL-1β, TNF-α, and G-CSF), G-CSF and IFN-γ impaired DC development from cultured HSPCs. G-CSF also markedly decreased the expression of HLA-DR on HSPC-derived DCs and their cytokine production, including IL-12 and IFN-β.ConclusionsCollectively, these findings indicate that sepsis impairs the survival of functional DCs and their development from HSPCs. Strategies for improving DC reconstitution following sepsis may restore DC progenitors and their associated function.


2009 ◽  
Vol 16 (11) ◽  
pp. 1648-1653 ◽  
Author(s):  
D. E. Campbell ◽  
N. B. Tustin ◽  
E. Riedel ◽  
R. Tustin ◽  
J. Taylor ◽  
...  

ABSTRACT The B7-CD28 immunoglobulin superfamily of costimulatory and coinhibitory ligands and their cell receptors play a critical role in modulating immune responses. Imbalances in these immune regulatory signals occur in pathological conditions characterized by chronic antigenic stimulation. Clinical studies often rely on the use of cryopreserved peripheral blood mononuclear cells (PBMC) to evaluate cellular immune responses. The impact of cryopreservation on these coinhibitory ligands and their cell receptors is unknown. In our studies, cryopreservation significantly reduced the expression of both PD-1 and PD-L1 on PBMC-derived CD3+/CD8+ T cells and CD45+/CD14+ monocytes obtained from adult control subjects. Blockade of PD-1, PD-L1, and PD-L2 using both freshly isolated and cryopreserved PBMC led to higher levels of phytohemagglutinin (PHA) and Candida-induced gamma interferon (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α) with no effect on IL-10 production. Coinhibitory signaling blockade of freshly isolated, PHA-stimulated PBMC from normal adult controls and human immunodeficiency virus (HIV)-infected subjects led to increased production of IL-4 and IL-5. Candida-stimulated PBMC preferentially induced IFN-γ and TNF-α production, with reduced production of IL-2 and IL-10. This is in contrast to high levels of IFN-γ, IL-2, and TNF-α production with PHA-stimulated cells. The effects of coinhibitory blockade on PHA and Candida-induced lymphoproliferation were varied, with freshly isolated PBMC from adult control subjects and HIV-infected patients yielding higher levels of lymphoproliferation in response to PD-1/PD-L1 blockade. Immune function studies employing cryopreserved cells may lead to increased T-cell effector cytolytic and regulatory immune responses.


Sign in / Sign up

Export Citation Format

Share Document