scholarly journals Increased Levels of CD107a and Intracellular Cytokines in IL-2 Stimulated PBMCs from Endometriosis Patients

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
R. Muharam ◽  
Ririn Rahmala Febri ◽  
Kevin Ardito Prabowo ◽  
Arleni Bustami ◽  
Indra G. Mansur

It has been postulated that the immune system is impaired in individuals with endometriosis, with attention directed to natural killer (NK) cells. Specifically, it has been hypothesized that altered numbers of peripheral NK cells in blood are associated with the presence of endometriotic lesions. This study aimed to evaluate the level of the peripheral NK cell surface marker CD107a in endometriosis in the presence of IL-2 stimulation. Peripheral blood mononuclear cells (PBMCs) were obtained from 7 women with endometriosis and 7 women without endometriosis. The PBMCs were divided into two groups and either treated with recombinant IL-2 or left untreated. The cytotoxic activity of the PBMCs toward target cells (K562) was evaluated. Then, both groups were cocultured for 4 days. The expressions of CD107a, TNF-α, and IFN-γ were determined using flow cytometry analysis. There was no difference in the expression of CD107a prior to IL-2 stimulation in PBMCs from women with endometriosis compared to those from women without endometriosis. However, we observed upregulation of the expression of the surface marker CD107a after treatment in the endometriosis group. In addition, there was a significant difference in CD107a expression in the endometriosis group before versus after stimulation with IL-2 ( p  < 0.01). We also found no difference in the production of TNF-α and IFN-γ before versus after treatment with IL-2 in either groups. The levels of CD107a were significantly enhanced in peripheral blood taken from women with endometriosis after treatment with IL-2.

2017 ◽  
Vol 9 (5) ◽  
pp. 511-525 ◽  
Author(s):  
Sophie M. Poznanski ◽  
Amanda J. Lee ◽  
Tina Nham ◽  
Evan Lusty ◽  
Margaret J. Larché ◽  
...  

The combination of interleukin (IL)-18 and IL-12 (IL-18+IL-12) potently stimulates natural killer (NK) cells, triggering an innate immune response to infections and cancers. Strategies exploiting the effects of IL-18+IL-12 have shown promise for cancer immunotherapy. However, studies have primarily characterized the NK cell response to IL-18+IL-12 in terms of interferon (IFN)-γ production, with little focus on other cytokines produced. IL-8 plays a critical role in activating and recruiting immune cells, but it also has tumor-promoting functions. IL-8 is classically produced by regulatory NK cells; however, cytotoxic NK cells do not typically produce IL-8. In this study, we uncover that stimulation with IL-18+IL-12 induces high levels of IL-8 production by ex vivo expanded and freshly isolated NK cells and NK cells in peripheral blood mononuclear cells. We further report that tumor necrosis factor (TNF)-α, produced by NK cells following IL-18+IL-12 stimulation, regulates IL-8 production. The IL-8 produced is in turn required for maximal IFN-γ and TNF-α production. These findings may have important implications for the immune response to infections and cancer immunotherapies. This study broadens our understanding of NK cell function and IL-18+IL-12 synergy by uncovering an unprecedented ability of IL-18+IL-12-activated peripheral blood NK cells to produce elevated levels of IL-8 and identifying the requirement for intermediates induced by IL-18+IL-12 for maximal cytokine production following stimulation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2283-2283 ◽  
Author(s):  
Rizwan Romee ◽  
Jeffrey W Leong ◽  
Stephanie E Schneider ◽  
Ryan P Sullivan ◽  
Todd A. Fehniger

Abstract Background NK cells are innate lymphocytes that are important for host defense against infections, and are potent anti-cancer immune effectors. In peripheral blood, human NK cells are categorized into developmentally related, but functionally distinct, subsets. CD56dim NK cells, thought to be developmentally more mature, are the major subset in peripheral blood (80-95%), express perforin and granzyme B at rest and exhibit degranulation, cytotoxicity and IFN-γ responses against tumor targets without prior stimulation. In contrast, CD56bright NK cells, are less mature, are the major subset in secondary lymphoid tissues, lack expression of perforin and granzyme B and are associated with minimal degranulation, cytotoxicity, and IFN-γ responses to tumor targets. IL-15 has been shown to support the survival and proliferation of CD56bright NK cells, but its impact on the anti-leukemia response has not been reported. Here we investigate the impact of brief exposure to human recombinant IL-15 on functional responses of CD56bright and CD56dim NK cells to leukemia target cells including primary AML blasts. Methods Normal human donor NK cells (>95% purity) were cultured with cytokine free media (control) or with 5 ng/ml of rhIL-15 (primed) for 16 hours, washed and then tested for functional responses after co-incubation with K562 cells or primary AML blasts for 6 hours. NK cell functional responses assessed include degranulation, cytokine production and cytotoxicity (using flow based killing assays). For the tumor:nk cell conjugate analyses, pre-stained NK cells were co-incubated with CFSE labeled K562 cells and then CD56bright conjugate formation assessed by gating on CFSE+CD56+CD16- cells. Results Anti-leukemia effector functions of human NK cells are classically attributed to the CD56dim subset, however after priming for 16 hours with rhIL-15 (5 ng/mL, a concentration that stimulates via the IL-2/15Rβγc), surprisingly, we observed that IL-15-primed CD56bright NK cells exhibited significantly greater degranulation (CD107a), cytokine (IFN-γ and TNF-α) and cytotoxic responses to both K562 leukemia cells (Figure 1) and to primary AML blasts (figure 2), compared to IL-15 primed CD56dim NK cells from the same donor. Further, we found a marked increase in the expression of perforin (70 ± 5% vs. 12 ± 6%, P< 0.0001), granzyme B (64 ± 5% vs. 12 ± 2.5%, P< 0.0001), and TRAIL (89 ± 2.5% vs. 6 ± 1%, P< 0.0001) in IL-15 primed CD56bright NK cells. We found an increased number of tumor conjugates with the IL-15 primed, compared to control, CD56bright cells at 5 minutes (19 ± 3% vs. 3.5 ± 1%, P= 0.02), 15 minutes (22 ± 3% vs. 8 ± 2%, P= 0.0003) or at 30 minutes (13 ± 2% vs. 3.5 ± 1%, P= 0.008) from the same donors. Further, there was a significant increase in the expression of NKG2D (MFI of 8.5 ± 2 vs. 3 ± 0.5, P= 0.03), NKp30 (65 ± 4% vs. 21 ± 3%, P< 0.0001), NKp44 (57 ± 3% vs. 15 ± 3%, P< 0.0001), CD2 (MFI of 25 ± 1.5 vs. 13 ± 1, P=0.004) and LFA-1/CD11a (MFI of 45 ± 1 vs. 29 ± 2, P=0.006) in the IL-15 primed CD56bright NK cells. Due to their known role in activating anti-tumor target responses by NK cells, NKG2D, NKp44, NKp30, CD2, and LFA-1 were evaluated for a non-redundant contribution to the anti-leukemia response of IL-15 primed CD56bright NK cells. Simultaneous blockade of these receptors caused almost complete abrogation of the enhanced anti-leukemic response by the IL-15 primed CD56bright NK cells (Figure 3). Conclusions CD56bright NK cells are traditionally considered to poorly respond to leukemia targets. Here we show that stimulation with IL-15 for a few hours markedly enhances their anti-leukemia properties including degranulation and cytotoxicity, as well as IFN-γ and TNF-α production, to a level significantly exceeding CD56dim NK cells. These functional enhancements are explained by multiple mechanisms, including increased cytotoxic effector proteins (perforin, granzyme B, TRAIL), improved leukemia cell conjugation, and enhanced activation requiring LFA-1, CD2 and NKG2D. These results suggest that CD56bright NK cells may play an under-appreciated anti-tumor role in settings of abundant IL-15, such as following lymphodepleting chemotherapy, preparation for stem cell transplantation, or exogenous IL-15 administration. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 10 (4) ◽  
pp. 875
Author(s):  
Kawaljit Kaur ◽  
Shahram Vaziri ◽  
Marcela Romero-Reyes ◽  
Avina Paranjpe ◽  
Anahid Jewett

Survival and function of immune subsets in the oral blood, peripheral blood and gingival tissues of patients with periodontal disease and healthy controls were assessed. NK and CD8 + T cells within the oral blood mononuclear cells (OBMCs) expressed significantly higher levels of CD69 in patients with periodontal disease compared to those from healthy controls. Similarly, TNF-α release was higher from oral blood of patients with periodontal disease when compared to healthy controls. Increased activation induced cell death of peripheral blood mononuclear cells (PBMCs) but not OBMCs from patients with periodontal disease was observed when compared to those from healthy individuals. Unlike those from healthy individuals, OBMC-derived supernatants from periodontitis patients exhibited decreased ability to induce secretion of IFN-γ by allogeneic healthy PBMCs treated with IL-2, while they triggered significant levels of TNF-α, IL-1β and IL-6 by untreated PBMCs. Interaction of PBMCs, or NK cells with intact or NFκB knock down oral epithelial cells in the presence of a periodontal pathogen, F. nucleatum, significantly induced a number of pro-inflammatory cytokines including IFN-γ. These studies indicated that the relative numbers of immune subsets obtained from peripheral blood may not represent the composition of the immune cells in the oral environment, and that orally-derived immune effectors may differ in survival and function from those of peripheral blood.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 10-11
Author(s):  
Rong Fu ◽  
Shaoxue Ding ◽  
Xiaowei Liang ◽  
Tian Zhang ◽  
Zonghong Shao

Recent research has found that Rapamycin (Rapa) was an effective therapy in mouse models of immune-mediated bone marrow failure. However, it has not achieved satisfactory effect in clinical application. At present, many studies have confirmed that Eltrombopag (ELT) combined with IST can improve the curative effect of AA patients. Then whether Rapa combined with Elt in the treatment of AA will be better than single drug application. In this study, we tested efficacy of Rapa combined with Elt as a new treatment in mouse models of immune-mediated bone marrow failure. Compared with AA group, the whole blood cell count of Rapa+Elt group increased significantly (Figure 1A) (P&lt;0.05). Survival of mice of Rapa+Elt group was significantly higher than that in the Rapa group (p &lt;0.01)(Figure 1B).There was no obvious difference in the numbers of NK cells and their subsets were noted in Rapa group,CsA group and Rapa+Elt group.The expression of NKG2D on peripheral functional NK cells was up-regulated in CsA group, Rapa group and Rapa+Elt group compared with AA group (P&lt;0.05). But there was no significant difference between effect of Rapa and CsA on the function of NK cells (Figure 1C).When Rapa combined with Elt, the expression of CD80 and CD86 are down-regulated more compared to Rapa group, but there is no statistical significance. Although these results suggested that Rapa+Elt had no statistical significance effect on numbers of mDC and expression of its functional molecule CD80 and CD86, the combined therapy still indicated that there is a potential synergy with immunosuppressant on AA mice to improve its outcome (Figure 1D).The results showed that CD4+/CD8+ ratio in CsA group, Rapa group, Rapa + Elt group had an obvious elevation than AA group (all P&lt;0.05). But there were no significant difference among the three groups on the CD4+/CD8+ ratio (Figure 1E,1F). As for INF-gamma, Rapa can reduce the secretion of IFN-γ from CD8+T cells with efficacy similar to that of the standard dose of CsA, and had a better outcome when combined with Elt in bone marrow failure mice (Figure 1E,1G).CsA group, Elt group, Rapa group, Rapa + Elt group showed notable increased ratio of Tregs compared with AA group, among which there were only Rapa group, Rapa + Elt group showed statistical significance(P&lt;0.05). for IL-10/Tregs ratio, Rapa group and Rapa +Elt group were superior to than CsA group(P&lt;0.05) (Figure 1H,1I).Rapa+Elt group and Rapa showed more lower level of IFN-γ compared with CsA group, and there was significant difference in Rapa+Elt group(P&lt;0.05). As for IL-10, IL-12p70, IL-2, IL-6, KC/GRO and TNF-α, the Rapa+Elt group showed more significant effect than Rapa or Elt alone(Figure1J). Thus, Rapa+Elt significantly down-regulated cytokines related to Th1 immune responses, such as IFN-γ, and upregulated cytokines related to Th2 immune responses, such as IL-10. To some extent, Rapa combined with Elt has a synergistic effect with CsA and Rapa alone in AA treatment. Conclusions In this study, Although Rapa combined with Elt had no significant improvement effect on the number and function of NK cells and their subsets, mDCs, and CD4+/CD8+ ratio in AA mice compared with Rapa alone, the Rapa+Elt can increase the secretion of IL-10 of Tregs and the number of Tregs, but has no significant effect on the number of Treg cells compared to with Rapa alone. Compared with AA group, the level of plasma IFN-γ, IL-2 and TNF-α decreased significantly (P&lt;0.05), but IL-10, IL-4, IL-5 and IL-1β increased significantly in Rapa group(P&lt;0.05). As for IL-10, IL-12p70, IL-2, IL-6, KC/GRO and TNF-α, the Rapa+Elt group showed more significant effect than Rapa alone. intervention treatment with Rapa in combination Elt in the AA mouse model more obviously ameliorated pancytopenia, improved bone marrow cellularity, and extended animal survival in a manner comparable to the standard dose of CsA and Rapa alone. Combination therapy support potential clinical utility in aplastic anemia treatment, which may further improve the efficacy of AA patients. Keywords: Rapamycin, Eltrombopag, murine models, bone marrow failure Figure 1 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4879-4879
Author(s):  
Juan Tong ◽  
Huilan Liu ◽  
Liangquan Geng ◽  
Zimin Sun ◽  
Baolin Tang ◽  
...  

Abstract Natural killer (NK) cell alloreactivity is reported to mediate strong graft versus leukemia (GVL) effect in patients after allogeneic stem-cell transplantation. NKG2D receptors recognize human MHC class Ichain related A and B (MICA/B) and UL16-binding protein 1∼4(ULBP 1∼4) on target cells, thereby regulating NK cell activity. To examine the recovery of NKG2D, NKG2A and other receptors expression by NK cells, we used flow cytometry to evaluate samples from 11 chronic myeloid leukemia patients and their donors in the year following unmanipulated HLA completely matched peripheral blood stem cells plus bone marrow transplantation. Peripheral blood mononuclear cells from patients and their donors were tested in standard 51Cr release assays against cultured K562 targets to determine the cytotoxicity of the NK cells in the same intervals. There is no mismatched immunoglobulin-like receptor (KIR) ligand in both GVH and HVG direction. The reconstitution of KIR2DL1 (CD158a) after this transplantation protocol was very slow and these receptors didn’t reach normal value in the year and KIR2DL2 (CD158b) was much better. The NKG2D increased and the NKG2A decreased quickly at the same time after engraftment, and used linear regression analysis we demonstrated that NKG2A recovery was inversely correlated with NKG2D recovery in the year following transplantation. The ratio of NKG2D/NKG2A was directly associated with the capacity of NK-cell cytotoxicity. Thus, the reconstitution of NKG2D makes contribution to the recovery of the NK cytotoxicity. These results reveals that the NK cells generated after HLA matched blood plus bone morrow transplantation of CML patients are promoted at an immature state characterized by specific phenotypic features and enhanced functioning, having potential impact for immune responsiveness and transplantation outcome.


2000 ◽  
Vol 68 (1) ◽  
pp. 320-327 ◽  
Author(s):  
Daniel J. Kwak ◽  
Nancy H. Augustine ◽  
Wellington G. Borges ◽  
Joanna L. Joyner ◽  
Wayne F. Green ◽  
...  

ABSTRACT Group B streptococci (GBS) are a major cause of severe infection in newborns, pregnant females, and other immunocompromised hosts. Infection often includes septicemia, shock, pneumonia, and respiratory failure. In previous studies, we have reported that GBS induce marked production of tumor necrosis factor alpha (TNF-α) by human mononuclear cells. The present study was designed to measure the production of TNF-α as well as additional cytokines, including interleukin 1β (IL-1β), IL-6, IL-8, IL-12, and gamma interferon (IFN-γ) but also to determine from what cells and at what time point during incubation with GBS that these cytokines are produced. Mixed mononuclear cells were incubated with heat-killed GBS, media alone, or 1 μg of Escherichia coli lipopolysaccharide (LPS). Brefeldin A was added to each sample prior to staining, which prevented the export of cytokines by the Golgi apparatus. The cells were then stained with the appropriate conjugated antibodies and analyzed by using a flow cytometer. Results indicate that intracellular cytokines appear, in almost all cases, simultaneous to or before secreted proteins are detected. In contrast to the response to LPS, where TNF-α, IL-1β, IL-6, and IL-8 appear almost simultaneously, the human monocyte response to GBS results in the production of TNF-α but delayed appearance of IL-1β, IL-6, and IL-8. The lymphocyte response to GBS was also strikingly different from that to LPS in that both secreted IFN-γ and IL-12 was detected, while LPS failed to induce production of these critical cytokines. This suggests an important role for TNF-α, IFN-γ, and IL-12 in GBS pathogenesis and/or immunity.


2014 ◽  
Vol 40 (04) ◽  
pp. 181-190
Author(s):  
Shiow-Chen Lin ◽  
Tien-Fu Chuang ◽  
Chen-Shi Lin ◽  
Dah-Sheng Lin ◽  
Albert Taiching Liao

Canine transmissible venereal tumor (CTVT) is a tumor which can be transmitted naturally through mucosa contact between dogs. When CTVT cells are experimentally inoculated on dogs, they will grow rapidly (Progressive/P phase) and then regress (Regressive/R phase) spontaneously. Therefore, it is a good model to investigate the interactions between tumor cells and host immune system. Previous studies have shown that CTVT cells cannot grow in the dogs restored from CTVT inoculation. To investigate the possible mechanism, this study characterized the CTVT-specific immune response of the peripheral blood mononuclear cells (PBMCs) which isolated from the blood of "naïve" or "CTVT-restored" dogs. The phenotypes (CD3, CD4, CD8, or CD21) of PBMCs were examined by flowcytometry. In response to CTVT stimulation, proliferation, IFN-γ secretion, and cytotoxicity of PBMCs were analyzed. Expression level of proinflammatory cytokines (TNF-α, IL-1β, IL-6, TGF-β), Th1 (IL-2, IFN-γ), and Th2 cytokines (IL-4, IL-10) and cytotoxic proteins (Granzyme B, Perforin) in PBMCs was also evaluated by real-time RT-PCR. The results indicated that there is no significant difference between two groups on lymphocyte phenotypes. Proliferation, IFN-γ secretion, and cytotoxicity of PBMCs between two groups showed no significant difference, except naïve PBMCs present higher proliferation after Con-A stimulation. Production of IL-1β and IL-6 in naïve PBMCs was higher than that in CTVT-restored PBMCs (p < 0.05). The production difference of IL-1β and IL-6 between two groups might be the reason why CTVT cannot be reinoculated on CTVT-restored dog. However, further investigations are necessary to explore the exact role of these cytokines in CTVT growth.


2021 ◽  
Vol 5 (7) ◽  
pp. 1805-1815
Author(s):  
Mayumi Yoshimori ◽  
Haruna Shibayama ◽  
Ken-Ichi Imadome ◽  
Fuyuko Kawano ◽  
Ayaka Ohashi ◽  
...  

Abstract Systemic chronic active Epstein-Barr virus (EBV; sCAEBV) infection, T- and natural killer (NK)-cell type (sCAEBV), is a fatal disorder accompanied by persisting inflammation harboring clonal proliferation of EBV-infected T or NK cells. Today’s chemotherapy is insufficient to resolve disease activity and to rid infected cells of sCAEBV. The currently established treatment strategy for eradicating infected cells is allogeneic hematopoietic stem cell transplantation. In this study, we focused on the effects of proteasome inhibitor bortezomib on the disease. Bortezomib suppressed survival and induced apoptosis of EBV+ T- or NK-cell lines and peripheral mononuclear cells containing EBV-infected T or NK cells of sCAEBV patients. Bortezomib enhanced binding immunoglobulin protein/78-kDa glucose-regulated protein (Bip/GRP78) expression induced by endoplasmic reticulum stress and activated apoptosis-promoting molecules JNK and p38 in the cell lines. Bortezomib suppressed the activation of survival-promoting molecule NF-κB, which was constitutively activated in EBV+ T- or NK-cell lines. Furthermore, quantitative reverse transcription–polymerase chain reaction demonstrated that bortezomib suppressed messenger RNA expression of proinflammatory cytokines tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ) in EBV+ T or NK cells from the patients. Finally, we examined the effects of bortezomib using xenograft models of sCAEBV generated by IV injection of patients’ cells. The intraperitoneal administration of bortezomib significantly reduced EBV-DNA load in peripheral blood and the infiltration of EBV-infected cells in the models’ livers. Moreover, the serum concentration of TNF-α and IFN-γ decreased after bortezomib treatment to the models. Our findings will be translated into the treatment of sCAEBV not only to reduce the number of tumor cells but also to suppress inflammation.


Sign in / Sign up

Export Citation Format

Share Document