Molecular Analyses Of The Effects Induced By Orally Administered Bortezomib In Drosophila Flies: A Novel In Vivo Experimental Platform To Screen For The Tissue- and Age-Dependent Effects Of Proteasome Inhibitors

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2910-2910 ◽  
Author(s):  
Eleni N. Tsakiri ◽  
Evangelos Terpos ◽  
Gerasimos P. Sykiotis ◽  
Issidora S. Papassideri ◽  
Vassilis G. Gorgoulis ◽  
...  

Abstract Organisms require efficient surveillance of proteome quality to prevent disruption of proteostasis (homeostasis of the proteome). Central to the proteostasis ensuring mechanisms is the proteasome, which is involved in the degradation of both normal short-lived ubiquitinated proteins and mutated or damaged proteins. Proteome quality control also depends on the activity of the Nrf2/Keap1 signaling pathway which upon increased oxidative stress stimulates the expression of phase II and antioxidant enzymes. Recent findings indicate that over-activation of the proteostasis ensuring mechanisms (e.g. the proteasome) represents a hallmark of advanced tumors, and thus their inhibition provides a strategy for the development of novel anti-tumor therapies. This approach is effectively applied in multiple myeloma (MM) that represents the second most common hematological malignancy. Bortezomib is the first-in-class proteasome inhibitor that is used in the clinic for the treatment of MM, both as a single agent and as part of combination regimens. Nevertheless, the impact of the in vivo impaired proteasome functionality in tissues of higher metazoans (which maybe related to adverse effects in the clinic) remains poorly understood. To address this issue we harnessed the power of Drosophila genetics and developed a novel in vivo model of specific dose-dependent pharmacological inhibition of proteasome in adult flies. Drosophila is well-suited to this line of investigation, due to its powerful genetics and its similarities in key metabolic and aging pathways with mammals; the fact that its proteasome resemble those from mammals and finally, because it comprises a soma-germ line demarcation composed of both post-mitotic and mitotic cell lineages. We have found that feeding of bortezomib to young flies causes dose-dependent decrease of proteasome activities in the hemolymph and the somatic tissues, disruption of proteostasis, reduced motor function (a phenotype that recapitulates peripheral neuropathy of bortezomib treatment in the clinic) and a marked reduction of flies’ lifespan. Further molecular analyses showed that proteasome dysfunction is signaled to the proteostasis network of the young (but not the aged) somatic tissues by reactive oxygen species that originated from damaged mitochondria and downstream activated the Nrf2/Keap1 signaling pathway. Nrf2 activation was essential for stimulation of the genomic antioxidant response elements and the upregulation of the proteasome subunits in order to restore normal proteasome proteolysis rates. Interestingly, the reproductive tissues of the flies were more resistant than somatic tissues to proteasome inhibition triggering (in an age-independent manner) a more intense upregulation of proteasome components after bortezomib-mediated proteasome dysfunction. Additional observations indicated that the toxicity of the bortezomib may also relates to the type of diet and that aged flies are extremely sensitive (compared to young organisms) to proteasome inhibition, while even short term exposures of young flies to bortezomib still affected their overall longevity. Finally, our studies showed that the lower threshold of proteasome activities that can support life is ∼30-40% of the physiological basal activities. Taken together, our findings establish that impaired proteasome function triggers the activation of a tissue- and age-dependent regulatory circuit aiming to adjust the actual cellular proteasome activity according to temporal and/or spatial proteolytic demands. Prolonged deregulation of this proteostasis regulatory circuit has significant detrimental effects and accelerates aging. These studies at the in vivo setting of fruit flies add new knowledge on the proteasome inhibitors effects in higher metazoans. Also, as research in this area of high biomedical interest has been developing fast they will, most likely, be of interest to a broader scientific community from distinct disciplines and they have the potential to enter the important, yet challenging, arena of translational medicine. To this end we have started translating findings from our Drosophila model in the clinical setting in order to demonstrate that our Drosophila pharmacological model fit in the spectrum of bench to bedside research. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3250-3250
Author(s):  
Eleni-Dimitra Papanagnou ◽  
Tina Bagratuni ◽  
Efstathios Kastritis ◽  
Issidora Papassideri ◽  
Evangelos Terpos ◽  
...  

Abstract Organisms require efficient surveillance of proteome functionality to prevent disruption of proteostasis. Central to the proteostasis ensuring network is the proteasome, which degrades both normal short-lived ubiquitinated proteins and damaged or mutated proteins. Over-activation of the proteasome seems to represent a hallmark of advanced tumors and thus, its selective inhibition provides a strategy for the development of novel anti-tumor therapies. This approach is applied in multiple myeloma (MM) that represents the second most common hematological malignancy. Specifically, proteasome inhibitors have demonstrated clinical efficacy in the treatment of MM and mantle cell lymphoma and are evaluated for the treatment of other malignancies. Nevertheless, the impact of proteasome dysfunction in normal human tissues (which relates to side effects in the clinic) remains poorly understood. By using the fruit fly Drosophila melanogaster as an in vivo experimental platform to study proteasome physiology we found that proteasome functionality is sex-, tissue- and age-dependent. Oral administration of proteasome inhibitors (e.g. Bortezomib or Carfilzomib) in young flies suppressed proteasome activities in the somatic tissues; reduced motor function (recapitulating peripheral neuropathy of Bortezomib treatment in the clinic) and caused premature aging. It also increased oxidative stress and activated an Nrf2-dependent feedback regulatory circuit that upregulated proteasome genes in order to restore normal proteasome functionality. Moreover, in line with observations in the clinic, Carfilzomib was found to cause milder (as compared to Bortezomib) neuromusculatory toxicity and reduction of flies' lifespan. To address the question whether these findings can be translated in humans we started characterizing proteasome physiology in both healthy donors, as well as in MM patients treated with therapeutic proteasome inhibitors. For our studies we used isolated red blood cells (RBCs; represent an anucleate relatively "long-lived" proteome) and peripheral blood mononucleated cells (PBMCs; represent cell lineages with active genomic responses). Our analyses in healthy donors of different ages revealed significant variability of basal proteasome peptidase activities in both cell types. PBMCs expressed (as compared to RBCs) higher basal proteasome activities and RBCs from females had higher chymotrypsin-like activity as compared to RBCs from males of similar age. Furthermore, as in the flies' somatic tissues, proteasome activities were found (independently of sex and cell type) to decline during aging. Studies in RBCs and PBMCs isolated from MM patients treated with Bortezomib revealed donor-, cell type- and drug-specific readouts. In most (but not all) cases proteasome activities were suppressed in both cell types at 24-hrs post-drug administration. RBCs were particularly sensitive to the inhibitor and their proteasome activities remained low during the entire course of treatment. On the contrary, PBMCs were characterized by phases of rebound proteasome activities during the periods of no drug administration; these phases correlated with upregulation of proteasome genes expression, indicating that the feedback regulatory circuit which functions to restore proteasome activities in flies is also operational in humans. Additional gene expression analyses in PBMCs showed that proteasome inhibition also triggers the induction of genes involved in chaperon, autophagy, unfolded protein- and antioxidant-responses pathways; while, as in the fly model, the intensity of genes induction seems to decline during aging. Interestingly, in those patients who (despite treatment) showed no reduction of proteasome activities we found marginal gene expression alterations, suggesting that the observed gene induction largely depends on proteasome loss of function. Importantly, at the clinical level we observed a positive correlation between the degree of proteasome inhibition (in PBMCs or RBCS) and the depth of disease responses. The similarities between the Drosophila pharmacological model and the MM patients indicate that the molecular responses to proteasome malfunction are largely conserved in higher metazoans. We foresee that our ongoing studies will support a more personalized clinical therapeutic approach in hematological malignancies. Disclosures Terpos: Amgen: Honoraria, Other: Travel expenses, Research Funding; Takeda: Honoraria; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses; Novartis: Honoraria; Celgene: Honoraria, Other: Travel expenses. Dimopoulos:Celgene: Honoraria; Onyx: Honoraria; Novartis: Honoraria; Genesis: Honoraria; Janssen-Cilag: Honoraria; Janssen: Honoraria; Amgen: Honoraria.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1930-1930
Author(s):  
Evangelos Terpos ◽  
Eleni N. Tsakiri ◽  
Efstathios Kastritis ◽  
Tina Bagratuni ◽  
Vassilis G. Gorgoulis ◽  
...  

Abstract The proteasome is involved in the degradation of both normal, short-lived ubiquitinated proteins and mutated or damaged proteins. Carfilzomib is a tetrapeptide epoxyketone–based proteasome inhibitor and oprozomib is an orally bioavailable tripeptide epoxyketone-based proteasome inhibitor. The primary target for both agents is the chymotrypsin-like β5 subunit of the constitutive proteasome and immunoproteasome. Oprozomib is 5-fold less potent than carfilzomib, but displays similar cytotoxic potential with longer exposure times due to its time-dependent proteasome inhibition. In contrast, bortezomib is a slowly reversible proteasome inhibitor with potency of proteasome inhibition similar to carfilzomib. We propose the fruit fly Drosophila melanogaster as an in vivo platform for screening and characterizing proteasome inhibitors at the whole organism level. Drosophilais well-suited to this line of investigation, due to its powerful genetics, its similarities in key metabolic and aging pathways with humans, the fact that it expresses proteasomes that structurally resemble those from mammals, and also because it comprises a soma-germ line demarcation composed of both post-mitotic and mitotic cells. Moreover, flies live for few months and thus, drug screening on large cohorts can be completed in a reasonable time. We validate our model by investigating the effects of orally administered carfilzomib and oprozomib vs. bortezomib. In isolated Drosophila proteasome in vitroassays, carfilzomib showed a pattern of inhibitory activity similar to bortezomib, whereas oprozomib was less effective. After continuous oral administration of the inhibitors (∼50 μM of carfilzomib and ∼300-400 μM of oprozomib) to young flies (by adding the inhibitor in the flies’ culture medium) a proteasome inhibitory effect in somatic tissues roughly similar to 1 μM bortezomib was induced. Similar findings were noted when we analyzed distinct somatic tissue parts (i.e., head, thorax and abdomen), indicating that orally administered proteasome inhibitors are equally distributed to different body parts. As in the case of bortezomib, the effects of the inhibitors were less pronounced in the reproductive tissues. At the molecular level, carfilzomib (as compared to bortezomib) induced a milder disruption of fly somatic tissue proteostasis, lower rates of somatic tissue oxidative stress and less intense activation of genomic antioxidant response elements that correlated with reduced intensities of proteasome genes and protein subunit upregulation. Proteasome subunit induction was found to depend on the activity of the transcription factor Nrf2, a master regulator of cellular anti-oxidant responses. Furthermore, carfilzomib promoted the induction of lysosomal enzymes (e.g. cathepsins) and autophagy-related genes but less intensively compared to bortezomib. At concentrations that induced rates of proteasome inhibition that were similar to bortezomib, there were no significant toxic effects of either carfilzomib or oprozomib to oogenesis or to embryogenesis. Compared to bortezomib, both inhibitors exerted a significantly milder impact on the neuromusculatory system (locomotor performance) of the flies. Finally, we found that sustained oral administration of either carfilzomib or oprozomib exerted significantly milder effects (as compared to bortezomib) on flies’ mortality rate, healthspan and overall longevity. Our in vivo data support that carfilzomib is significantly less toxic compared to bortezomib, including neuromusculatory toxicity. Oprozomib was also less toxic but it is worth noting that it showed reduced activity against fly proteasomes. In support, our preliminary analyses indicated that in comparison to bortezomib and carfilzomib, oprozomib was less potent when tested in human osteosarcoma cancer cell lines. The validity of our in vivo pharmacological model is exemplified by the observed similarities with the reported clinical adverse effects, while the ratio of the different doses used to achieve similar rates of proteasome inhibition in Drosophila somatic tissues (i.e. ∼1 μM bortezomib, ∼50 μM carfilzomib) is reminiscent of the doses used in the clinic (i.e. ∼1.3 mg/m2 bortezomib and ∼25-56 mg/m2 carfilzomib). We conclude that fruit flies represent a valid biological platform for evaluating the efficacy and toxicity of proteasome inhibitors. Disclosures: No relevant conflicts of interest to declare.


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 325 ◽  
Author(s):  
Xiaojuan Li ◽  
Yunping Tang ◽  
Fangmiao Yu ◽  
Yu Sun ◽  
Fangfang Huang ◽  
...  

We investigated the antitumor mechanism of Anthopleura anjunae oligopeptide (AAP-H, YVPGP) in prostate cancer DU-145 cells in vitro and in vivo. Results indicated that AAP-H was nontoxic and exhibited antitumor activities. Cell cycle analysis indicated that AAP-H may arrest DU-145 cells in the S phase. The role of the phosphatidylinositol 3-kinase/protein kinase B/mammalian rapamycin target protein (PI3K/AKT/mTOR) signaling pathway in the antitumor mechanism of APP-H was investigated. Results showed that AAP-H treatment led to dose-dependent reduction in the levels of p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448), whereas t-AKT and t-PI3K levels remained unaltered compared to the untreated DU-145 cells. Inhibition of PI3K/AKT/mTOR signaling pathway in the DU-145 cells by employing inhibitor LY294002 (10 μM) or rapamycin (20 nM) effectively attenuated AAP-H-induced phosphorylation of AKT and mTOR. At the same time, inhibitor addition further elevated AAP-H-induced cleaved-caspase-3 levels. Furthermore, the effect of AAP-H on tumor growth and the role of the PI3K/AKT/mTOR signaling pathway in nude mouse model were also investigated. Immunohistochemical analysis showed that activated AKT, PI3K, and mTOR levels were reduced in DU-145 xenografts. Western blotting showed that AAP-H treatment resulted in dose-dependent reduction in p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448) levels, whereas t-AKT and t-PI3K levels remained unaltered. Similarly, Bcl-xL levels decreased, whereas that of Bax increased after AAP-H treatment. AAP-H also increased initiator (caspase 8 and 9) and executor caspase (caspase 3 and 7) levels. Therefore, the antitumor mechanism of APP-H on DU-145 cells may involve regulation of the PI3K/AKT/mTOR signaling pathway, which eventually promotes apoptosis via mitochondrial and death receptor pathways. Thus, the hydrophobic oligopeptide (YVPGP) can be developed as an adjuvant for the prevention or treatment of prostate cancer in the future.


2019 ◽  
Vol 3 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Scott Best ◽  
Taylor Hashiguchi ◽  
Adam Kittai ◽  
Nur Bruss ◽  
Cody Paiva ◽  
...  

Abstract Alterations in the ubiquitin proteasome system (UPS) leave malignant cells in heightened cellular stress, making them susceptible to proteasome inhibition. However, given the limited efficacy of proteasome inhibitors in non-Hodgkin lymphoma (NHL), novel approaches to target the UPS are needed. Here, we show that TAK-243, the first small-molecule inhibitor of the ubiquitin activating enzyme (UAE) to enter clinical development, disrupts all ubiquitin signaling and global protein ubiquitination in diffuse large B-cell lymphoma (DLBCL) cells, thereby inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Activation of the ER stress response protein kinase R (PKR)–like ER kinase and phosphorylation of eukaryotic translation initiator factor 2α led to upregulation of the proapoptotic molecule C/EBP homologous protein and cell death across a panel of DLBCL cell lines independent of cell of origin. Concurrently, targeting UAE led to accumulation of Cdt1, a replication licensing factor, leading to DNA rereplication, checkpoint activation, and cell cycle arrest. MYC oncoprotein sensitized DLBCL cells to UAE inhibition; engineered expression of MYC enhanced while genetic MYC knockdown protected from TAK-243–induced apoptosis. UAE inhibition demonstrated enhanced ER stress and UPR and increased potency compared with bortezomib in DLBCL cell lines. In vivo treatment with TAK-243 restricted the growth of xenografted DLBCL tumors, accompanied by reduced cell proliferation and apoptosis. Finally, primary patient-derived DLBCL cells, including those expressing aberrant MYC, demonstrated susceptibility to UAE inhibition. In sum, targeting UAE may hold promise as a novel therapeutic approach in NHL.


2011 ◽  
Vol 91 (5) ◽  
pp. 536-541 ◽  
Author(s):  
Tayyab S. Diwan ◽  
Suresh Raghavaiah ◽  
Justin M. Burns ◽  
Walter K. Kremers ◽  
James M. Gloor ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2866-2866
Author(s):  
Hisayuki Yao ◽  
Eishi Ashihara ◽  
Rina Nagao ◽  
Shinya Kimura ◽  
Hideyo Hirai ◽  
...  

Abstract Abstract 2866 Poster Board II-842 Although new molecular targeting agents against multiple myeloma (MM) have been developed, MM still remains an incurable disease. It is important to continue to investigate new therapeutic agents based on the biology of MM cells. β-catenin is the downstream effector of Wnt signaling and it regulates genes implicated in malignant progression. We have demonstrated that blockade of Wnt/β-catenin signaling pathway inhibits the progression of MM by using RNA interference methods with an in vivo mouse model (Ashihara E, et al. Clin Cancer Res 15:2731, 2009.). In this study, we investigated the effects of AV-65, a novel inhibitor of the Wnt/β-catenin signaling pathway, on MM cells. The system to identify a series of small molecule compounds using a biomarker driven approach has been established. A gene expression biomarker signature reporting on the inhibition of Wnt/β-catenin signaling was generated upon treatment of a colon cancer cell line with β-catenin siRNA. This gene expression signatiure was used to screen a small molecule compound library to identify compounds which mimic knockdown of β-catenin and thus potentially inhibit the Wnt/β-catenin signaling pathway. One compound series, LC-363, was discovered from this screen and validated as novel Wnt/β-catenin signaling inhibitors (Strovel JW, et al. ASH meeting, 2007.). We investigated the inhibitory effects of AV-65, one of LC-363 compounds, on MM cell proliferation. AV-65 inhibited the proliferation of MM cells in a time- and a dose-dependent manner and the values of IC50 at 72 hrs were ranging from 11.7 to 82.1 nM. AV-65 also showed an inhibitory effect on the proliferation of RPMI8226/LR-5 melphalan-resistant MM cells (provided from Dr. William S. Dalton). In flow cytometric analysis, apoptotic cells were increased by AV-65 treatment in a time- and a dose-dependent manner. Western blotting analysis showed that β-catenin was ubiquitinated and that the expression of nuclear β-catenin diminished (Figure 1). Moreover, AV-65 suppressed T-cell factor transcriptional activities, resulting in the decrease of c-myc expression. Taken together, AV-65 promotes the degradation of β-catenin, resulting in the induction of apoptosis of MM cells. We next investigated the in vivo effects of AV-65 using an orthotopic MM-bearing mouse model. AV-65 inhibits the growth of MM cells and significantly prolongs the survival rates (Figure 2). In conclusion, AV-65 inhibited the proliferation of MM cells via inhibition of the Wnt/β-catenin signaling pathway. AV-65 is a promising therapeutic agent for treatment of MM. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 298 (3) ◽  
pp. F807-F817 ◽  
Author(s):  
Renfang Song ◽  
Melissa Spera ◽  
Colleen Garrett ◽  
Samir S. El-Dahr ◽  
Ihor V. Yosypiv

ANG II AT2 receptor (AT2R)-deficient mice exhibit abnormal ureteric bud (UB) budding, increased incidence of double ureters, and vesicoureteral reflux. However, the role of the AT2R during UB morphogenesis and the mechanisms by which aberrant AT2R signaling disrupts renal collecting system development have not been fully defined. In this study, we mapped the expression of the AT2R during mouse metanephric development, examined the impact of disrupted AT2R signaling on UB branching, cell proliferation, and survival, and investigated the cross talk of the AT2R with the glial-derived neurotrophic factor ( GDNF)/ c-Ret/Wnt11 signaling pathway. Embryonic mouse kidneys express AT2R in the branching UB and the mesenchyme. Treatment of embryonic day 12.5 ( E12.5) metanephroi with the AT2R antagonist PD123319 or genetic inactivation of the AT2R in mice inhibits UB branching, decreasing the number of UB tips compared with control (34 ± 1.0 vs. 43 ± 0.6, P < 0.01; 36 ± 1.8 vs. 48 ± 1.3, P < 0.01, respectively). In contrast, treatment of metanephroi with the AT2R agonist CGP42112 increases the number of UB tips compared with control (48 ± 1.8 vs. 39 ± 12.3, P < 0.05). Using real-time quantitative RT-PCR and whole mount in situ hybridization, we demonstrate that PD123319 downregulates the expression of GDNF, c-Ret, Wnt11, and Spry1 mRNA levels in E12.5 metanephroi grown ex vivo. AT2R blockade or genetic inactivation of AT2R stimulates apoptosis and inhibits proliferation of the UB cells in vivo. We conclude that AT2R performs essential functions during UB branching morphogenesis via control of the GDNF/c-Ret/Wnt11 signaling pathway, UB cell proliferation, and survival.


2017 ◽  
Author(s):  
Yanan Zhu ◽  
Rajiv Ramasawmy ◽  
Sean Peter Johnson ◽  
Valerie Taylor ◽  
Alasdair Gibb ◽  
...  

AbstractWith clinically-approved proteasome inhibitors now a standard of care for multiple myeloma, and increasing interest in their use in solid tumors, methods for monitoring therapeutic response in vivo are critically required. Here, we show that tumor protein homeostasis can be noninvasively monitored, using chemical exchange (CEST) magnetic resonance imaging (MRI) as a surrogate marker for proteasome inhibition, alongside diffusion MRI and relaxometry. We show that the in vivo CEST signal associated with amides and amines increases in proportion to proteasome inhibitor dose (ixazomib) and the magnitude of therapeutic effect in colorectal cancer xenografts. Moreover, we show that SW1222 and LS174T human colorectal cancer cell lines demonstrate differing sensitivities to ixazomib, which was reflected in our MRI measurements. We also found evidence of a mild stimulation in tumor growth at low ixazomib doses. Our results therefore identify CEST MRI as a promising method for safely and noninvasively monitoring changes in tumor protein homeostasis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5755-5755
Author(s):  
Yuko Tanaka ◽  
Seiichi Okabe ◽  
Tetsuzo Tauchi ◽  
Yoshikazu Ito ◽  
Kazuma Ohyashiki

Abstract Multiple myeloma (MM) is one of the common hematological malignancies and is a uniformly fatal disorder of B cells characterized by accumulation of abnormal plasma cells in the bone marrow. Proteasome inhibitor, bortezomib, and immunomodulatory drugs such as thalidomide and lenalidomide play important roles in the treatment of MM patients. Although novel agents including, e.g. bortezomib, have significantly improved the response and survival of patients with MM, a large number of patients eventually have relapsed. For the patients who relapse after treatment with novel agents, the prognosis is still poor. Thus circumstanced, alternative strategies are required for continued disease control. Phosphoinositide 3-kinases (PI3Ks) are a family of proteins involved in the regulator of cell growth, metabolism and proliferation. PI3K signaling pathway also plays a critical regulatory role in MM pathology, including survival, cellular proliferation, migration and angiogenesis. Therefore, PI3K signaling pathway may present attractive targets for MM treatment. Copanlisib also known as BAY80-6946 is a potent and highly selective reversible PI3K inhibitor. Copnalisib is currently investigated in a pivotal phase 2 clinical trial against hematological malignancy such as malignant lymphoma. We hypothesized that treatment with PI3K inhibitor and proteasome inhibitors together would result in enhanced therapeutic activity in MM cells. In this study, we investigated the efficacy of copanlisib by using the MM cell lines, RPMI8226, MM1.S and MM1.R and primary sample. 72 h treatment of copanlisib exhibits cell growth inhibition of MM cell lines in a dose dependent manner. The treatment of proteasome inhibitors, bortezomib and carfilzomib exhibits cell growth inhibition partially against RPMI8226 cells in the presence of feeder cell line, HS-5. We examined the intracellular signaling in the presence of HS-5. Phosphorylation of Akt and activation of caspase 3 and poly (ADP-ribose) polymerase (PARP) was partially reduced by carfilzomib or bortezomib in the presence of HS-5. We found that the treatment of copanlisib abrogated the protective effects of HS-5 in RPMI8226 cells. We examined the intracellular signaling after treatment of copanlisib. Activity of caspase 3 and poly (ADP-ribose) polymerase (PARP) was increased after copnlisib treatment in a dose dependent manner. Because PI3K signaling pathway regulates MM cell migration, we next evaluated the chemotactic response of MM cells to stromal cell-derived factor 1α (SDF-1α). We found that 4 h treatment of SDF-1α significantly induced the migration of MM cells compared to control medium. Treatment of copanlisib inhibited SDF-1α-stimulated chemotaxis in a dose dependent manner. We found that phosphorylation of Akt was reduced after copanlisib treatment suggesting that intracellular PI3K signaling pathway may play the important role in SDF-1α induced chemotaxis of MM cells. We investigated the copanlisib activity against MM cells. Combined treatment of MM cells with proteasome inhibitor, carfilzomib or bortezomib, and copanlisib caused significantly more cytotoxicity than each drugs alone. Phosphorylation of Akt was reduced and cleaved PARP was increased after copanlisib with or without proteasome inhibitor. We also found that copanlisib which was combinaed with carfilzomib or borteomib exhibited cell growth inhibition against MM primary sample. Data from this study suggested that administration of the PI3K inhibitor, copanlisib may be a powerful strategy against stroma-associated drug resistance of MM cells and enhance cytotoxic effects of proteasome inhibitors in those residual MM cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1513-1513
Author(s):  
Philipp Baumann ◽  
Karin Mueller ◽  
Sonja Mandl-Weber ◽  
Helmut Ostermann ◽  
Ralf Schmidmaier ◽  
...  

Abstract Purpose: Multiple Myeloma (MM) is still an incurable disease. Patients become resistant to cytotoxic drugs and die of disease progression. Bortezomib is the first approved member of a new class of antineoplastic agents, the proteasome inhibitors. It has synergistic effects with genotoxic drugs and steroids in vitro and in vivo. However, single agent activity in humans is only moderate and specific toxicity (e.g. neurotoxicity) often limits its clinical use. Further proteasome inhibitors need to be developed to optimize this promising treatment option. Methods: The new proteasome inhibitor S-2209 was characterized by several assays. Inhibition of the chymotryptic activity of the human 20S proteasome was determined with the in-vivo protease inhibition assay. Additionally, proteasome inhibition was determined in isolated PBMCs from S2209-pretreated wistar rats. Inhibition of NFκB activity was determined using a NFκB reporter gene assay. Cell growth rates of MM cells (OPM-2, U266, RPMI-8226 and NCI-H929) were measured with the WST-1 assay. Induction of apoptosis was shown by flow cytometry after staining with annexin-V-FITC and propidium iodide. Intracellular signal modulation was demonstrated by western blotting. Toxicity of the substance was tested in male wistar rats. Results: The proteasome inhibition assay revealed an IC50 at ∼220nM. The NFκB inhibition assay using an A549-NFκB-SEAP transfected cell line showed an EC50 of 0.9μM. Upon incubation with S-2209, cell growth as well as cell proliferation in MM cell lines was significantly inhibited (IC50 100nM – 600nM). Furthermore, the incubation with S-2209 resulted in strong induction of apoptosis in all four MM cell lines even at nanomolar concentrations (IC50 at ∼300nm) as well as primary cells. Western blotting revealed caspase-3 cleavage and upregulon of p53 and increased phosphorylation of IκB. No induction of apoptosis was detected in PBMCs from healthy humans. Despite the administration of 5, 10 or 15mg/kg/day in wistar rats, no toxicity with respect to body weight, hepatic enzymes (ALAT ASAT, ALP), creatinin or hemoglobin was seen. Proteasome inhibition in white blood cells isolated from the treated rats was higher in the S-2209 treated animals than in control animals treated with 0.1mg/kg/d bortezomib (89% vs. 70% respectively). Conclusions: The proteasome inhibitor S-2209 inhibitis MM cell growth and induces apoptosis. This is accompanied by a strong inhibition of proteasome and of the NFκB activity. Because S-2209 shows a favourable toxicity profile in vivo, further clinical development of this promising drug is urgently needed.


Sign in / Sign up

Export Citation Format

Share Document