Pcft Is Silenced By DNA Methylation In Pediatric Acute Lymphoblastic Leukemia Resulting In Decreased Methotrexate Uptake

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3768-3768
Author(s):  
Calvin K. Lee ◽  
Weijie Poh ◽  
Megan Healey ◽  
Eric S Schafer ◽  
Patrick Brown ◽  
...  

Abstract Introduction Acute lymphoblastic leukemia (ALL) remains the most common cancer diagnosis in children, accounting for 21% of all pediatric cancers from birth to 19 years. Antifolate therapy, specifically treatment with methotrexate, is central in ALL therapy. Genetic polymorphisms, such as those for MTHFR and SLC01B1 can contribute to how methotrexate is metabolized and can alter side effect profiles, but they do not fully explain why transformed cells may become resistant to methotrexate. Epigenetic abnormalities, including dysregulation of DNA methylation, is frequent in all types of cancers including ALL, often leading to silencing of tumor suppressor genes. Epigenetic silencing could potentially influence a cell's sensitivity to antifolate therapy. PCFT is a low pH folate transporter and the regulation of PCFT gene expression includes DNA methylation. Previous studies have demonstrated that treatment with a hypomethylating agent results in reexpression of the gene. PCFT methylation, however, has not yet been studied in primary cancer tissues. Decreased or absent levels of PCFT could result in decreased methotrexate uptake and provide a mechanism of resistance. Methods Genomic DNA and RNA were isolated from primary pediatric ALL samples as well as ALL cell lines. Methylation status was evaluated using methylation specific PCR (MSP). Expression was measured using qRT-PCR. Cell lines were treated with the hypomethylating agent 5-Aza-2-deoxycytidine (5-Aza-2dC). After treatment with 5-Aza-2dC, RNA was isolated for expression. Cells were also evaluated for methotrexate entry into the cell using fluorescein-tagged methotrexate. Results We found that 100% of ALL cell lines (n=5) were methylated at PCFT. In primary patient samples, among an initial cohort, 23/33 samples (70%) had methylation at PCFT by MSP. By subtype of ALL, methylation of PCFT was found in 14/21 (67%) of B-cell ALL and 9/12 (75%) of T-cell ALL. This cohort did not have RNA available or outcome data. In a second pediatric ALL cohort of newly diagnosed patients, 23/40 (57%) were methylated at the PCFT promoter. Among these samples, 19/33 B-cell ALL, and 4/7 T-cell ALL were methylated at PCFT. The mean diagnostic age of the patients with PCFT promoter methylation was lower (7.13 years) than those that were unmethylated (8.71 years). Within this cohort with between 4.5 and 15 years of time elapsed since diagnosis, only 3 patients experienced recurrent or refractory disease. Of these patients, 1 had methylation of PCFT. Expression analysis by qRT-PCR demonstrated that 2 cell lines had no expression of PCFT (Tanoue and Nalm6) while 1 cell line expressed low level PCFT despite having promoter methylation (HB 11;19). Among the primary ALL samples, the unmethylated group had a higher mean expression of PCFT (1/ΔCt = 0.068) than the methylated group (1/ΔCt = 0.0635; p=0.045), suggesting that methylation of PCFT leads to decreased expression. Treatment of the ALL cell lines with 5-Aza-2dC did induces expression of PCFT in Nalm6 and Tanoue, but did not increase expression in HB 11;19 where expression was already present. After treatment with 5-Aza-2dC, Nalm6 and Tanoue also increased the intake of methotrexate by 2.25 and 1.7 times respectively, while in HB 11;19, the methotrexate intake decreased by a factor of 0.73. Conclusions PCFT is frequently methylated in both B-cell and T-cell pediatric ALL. DNA methylation was associated with decreased expression in primary samples. Hypomethylating agents can reverse this gene silencing resulting in higher methotrexate entry into the cell, providing a potential strategy for overcoming methotrexate resistance. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2490-2490
Author(s):  
Abdusebur Jemal ◽  
Jeffrey W Tyner ◽  
Mathew Thayer ◽  
Markus Muschen ◽  
Brian J. Druker ◽  
...  

Abstract Abstract 2490 Background: Pediatric Acute Lymphoblastic Leukemia (ALL) remains the most common pediatric malignancy. Despite advances in treatment and outcomes, there continue to be subsets of patients that are refractory to standard intensive chemotherapy and hematopoietic stem cell transplant. Therefore, novel gene targets for therapy are needed to further advance treatment for this disease. Survivin, a member of the chromosome passenger complex and inhibitor of apoptosis has been shown to be over-expressed in malignant cells and in relapsed ALL. Therefore, survivin may be a potential target for therapy in pediatric ALL. The selective survivin suppressant, YM155 (Astellas) has been shown to inhibit survivin expression and activate cell death in multiple cell lines. Early phase I studies show promise in both tolerability and possible efficacy in B-cell malignancies. Therefore, this drug may have the potential of improving treatment for pediatric B-cell precursor ALL. Design/methods: Pediatric lymphoblastic cell lines, fresh primary lymphoblast cells from newly diagnosed patients with ALL and xenografted patient samples were used in this study. Cells were incubated in the presence of YM155 at doses ranging from 1nM to 10μM. Viability was measured using a standard methane-thiosulfonate viability assay. Activation of apoptosis was identified using the Guava nexin Annexin V binding assay for cell lines. Results: Treatment of ALL cell lines, primary patient samples and xenograft samples show a dose-dependent sensitivity to YM155 by both activation of apoptosis and by cell viability. IC50 doses for the majority of the samples are in the low nanomolar range (Table). Interestingly, there is some variability amongst patient samples suggesting possible variable responses in vivo. Ectopic expression of survivin in cell lines treated with YM155 rescues the effect of the drug. Further, t(9;22) positive ALL samples, including primary patient, xenograft, and dasatinib resistant samples remain significantly sensitive to YM155. For dasatinib sensitive Ph+ALL samples, combination therapy suggest an additive effect by isobologram analysis. Conclusion: Pediatric ALL samples remain sensitive to treatment with YM155 in cell lines, primary patient and xenografted samples. The results of these experiments will be used as a foundation to develop a comprehensive understanding of the mechanisms of survivin dependence in pediatric ALL. Future studies will also be designed to develop YM155 as an additional therapy for pediatric acute lymphoblastic leukemia. Disclosures: Druker: Cylene:; MolecularMD:; Novartis:; Bristol-Myers-Squibb:.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1419-1419
Author(s):  
Kenji Tokunaga ◽  
Shunichiro Yamaguchi ◽  
Eisaku Iwanaga ◽  
Tomoko Nanri ◽  
Taizo Shimomura ◽  
...  

Abstract Abstract 1419 Aims: Molecular pathogenesis of acute lymphoblastic leukemia (ALL) has largely been verified in pediatric patients and the identification of genetic alterations have contributed to stratifying therapeutic applications. In adult patients with ALL, cytogenetic and genetic abnormalities have not sufficiently been elucidated and therapeutic improvement has been hindered. CREB binding protein (CREBBP) is a transcriptional coactivator that interacts with a diverse range of transcription factors and regulates transcription by histone acetylation in hematopoiesis. Mutations of the CREBBP gene are recently found in approximately 2–4% of pediatric patients with ALL. Especially in relapsed cases, the mutations prevail (18–63%) and are possible markers for prediction of relapse in pediatric ALL. In adult patients with ALL, the clinical significance of CREBBP mutations remains to be determined. Here we examined adult ALL patients in an attempt to determine the incidence, clinical characteristics and prognostic impact of the CREBBP mutations. Methods: We investigated 71 adult patients with newly diagnosed ALL treated with JALSG protocols between 1986 and 2010. Age ranged from 15 to 86 years, with a median of 54 years. CREBBP mutations are dominantly identified in histone acetyltransferase (HAT) domain. HAT domain in the CREBBP gene was amplified with RT-PCR using RNA isolated from the peripheral blood or bone marrow mononuclear cells at diagnosis and was subjected to direct sequencing. We compared clinical profiles between patients with and without CREBBPHAT domain mutations. This study was approved by the Institutional Review Boards and informed consent was obtained from each patient according to guidelines based on the revised Declaration of Helsinki. Results: CREBBP HAT domain mutations were detected in 8 of 71 (11.3%) patients: one nonsense mutation, five insertion mutations with frameshifts, and five missense mutations. Two patients harbored biallelic mutations. The mutations at diagnosis in adult patients were seen more frequently than those in pediatric patients ever reported. Such mutations were not completely identical to those detected in pediatric ALL, but were seen in the region within the HAT domain, indicating that such mutations are loss-of-function mutations. The mutations were found in both B-cell (6/53: 11.3%) and T-cell (1/9: 11.1%) ALL, and distributed in patients harboring IKZF1 alterations (3/31: 9.7%) or the BCR-ABL fusion gene (2/19: 10.5%). There were no statistical difference in age, sex, leukocyte, platelet counts and complete remission rate between patients with and without the CREBBP HAT domain mutations. Patients with the mutations had a trend with worse cumulative incidence of relapse (P=0.4637), relapse-free survival (P=0.4195) and OS (P=0.2349) compared to patients lacking the mutations, but statistical significance was not detected in this small cohort. Conclusions: CREBBP HAT domain mutations at diagnosis in adult ALL are found more frequently than in pediatric ALL. This may be one of the mechanisms that adult ALL has been associated with poor OS compared with pediatric ALL. In this study, CREBBP HAT domain mutations were observed in various subtypes of ALL: both B-cell and T-cell ALL, and both Philadelphia chromosome positive and negative ALL. In pediatric ALL, CREBBP mutations were frequently seen in relapsed patients but not in previously untreated patients. These observations suggest that CREBBP mutations play an important role in an additional late event(s) leading to the development and progression of ALL. Our study implies the possibility that mutations of the CREBBP gene are associated with the pathogenesis and prognostic marker of adult ALL and represent specific epigenetic modifiers in adult ALL, serving as potential therapeutic targets. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1981 ◽  
Vol 58 (3) ◽  
pp. 648-652 ◽  
Author(s):  
J Ritz ◽  
LM Nadler ◽  
AK Bhan ◽  
J Notis-McConarty ◽  
JM Pesando ◽  
...  

Previous studies have demonstrated that the common acute lymphoblastic leukemia antigen (CALLA) is expressed by leukemic cells from approximately 80% of patients with non-T-cell ALL and 30%-50% of patients with chronic myelocytic leukemia in blast crisis. A small number of normal bone marrow and fetal liver cells also express CALLA, but the functional role of this molecule is unknown. In the present study, we have used a monoclonal antibody (J5) specific for CALLA to study the expression of this antigen in non-Hodgkin's lymphomas. Within the B-cell lymphomas, it was found the CALLA was expressed by almost all Burkitt's and nodular poorly differentiated lymphocytic lymphomas. Within the T-cell lymphomas, CALLA was expressed in 40% of patients with lymphoblastic lymphoma. Three of 3 Burkitt's lymphoma cell lines and three of eight T-lymphoblast cell lines were also found to express CALLA. Normal spleen, lymph node, and thymus cells were not reactive with J5 antibody. These findings indicate that expression of CALLA is not limited to relatively undifferentiated leukemic lymphoblasts but also occurs in more differentiated lymphoid malignancies. However, normal differentiated lymphoid cells in lymph node, spleen, and thymus, which have a phenotype similar to that of lymphoma cells, do not appear to express CALLA.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ramzi Shawahna ◽  
Sultan Mosleh ◽  
Yahya Odeh ◽  
Rami Halawa ◽  
Majd Al-Ghoul

Abstract Objective Pediatric acute lymphoblastic leukemia (ALL) is the most prevalent type of cancer among children. This study was conducted to describe and correlate the clinical characteristics and outcomes of treatment of patients with pediatric ALL in the main referral hospital in Palestine. Results Complete data of 69 patients were included in this analysis. The majority (79.7%) of the patients had B-ALL phenotype. After induction chemotherapy, remission was experienced by the vast majority of the patients and 5 (7.2%) experienced relapses. Cytogenetics for patients with B-ALL phenotype indicated that 10 (18.2%) patients had t(12, 21) translocation, 5 (9.1%) had hyperdiploidy, 4 (7.3%) had t(1, 19) translocation, and 2 (3.6%) had t(9, 22) translocation. The initial white blood cells (p value < 0.001), absolute neutrophils (p value = 0.011), and hemoglobin (p value < 0.001) were significantly lower in patients with B-cell ALL. Platelet counts were significantly lower (p value = 0.012) in patients with splenomegaly and those with bleeding symptoms (p value = 0.008). Presence of palmar pollar was positively associated (p value = 0.035) with T-cell ALL. Presence of hepatomegaly was positively associated (p value < 0.001) with splenomegaly.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3372-3372
Author(s):  
Shaoqing Kuang ◽  
Patrick Zweidler-McKay ◽  
Hui Yang ◽  
Zhi Hong Fang ◽  
Weigang Tong ◽  
...  

Abstract The Notch signaling pathway has been implicated in multiple functions during normal hemato-lymphoid development. It also plays critical roles in T-cell leukemogenesis through influencing T-cell proliferation, differentiation and survival. In contrast, we have previously reported a tumor suppressor role in B-cell leukemias, where Notch signaling leads to growth inhibition and apoptosis. The Notch target genes Hairy/Enhancer of Split (HES1-7) encode transcriptional repressors with basic helix-loop-helix (bHLH) domains. Functional and phenotypic analyses of some of the HES family members have been reported, however, expression and epigenetic regulation of the HES family in leukemia is largely unknown. Using Methylated CpG Island Amplification (MCA) / DNA promoter microarray, we identified several HES family genes as hypermethylated in B cell acute lymphoblastic leukemia (B ALL). We further investigated the comprehensive methylation profiles of HES family genes in a panel of leukemia cell lines and ALL patient samples by bisulfite pyrosequencing. Aberrant DNA methylation of HES2, HES4, HES5 and HES6 was detected in most B ALL cell lines including B-JAB, RS4:11, REH, Raji and Ramos but not in normal B cell controls. In contrast, in T cell leukemia cell lines such as Molt4, PEER, T-ALL1 and J-TAG, these genes were generally unmethylated. In B ALL patient samples, the frequencies of DNA methylation in the promoter regions of these genes were 25% for HES2, 50% for HES4, 76% for HES5 and 71% for HES6. Expression analysis of HES4, HES5 and HES6 in leukemia cell lines by real-time PCR further confirmed methylation associated gene silencing. Treatment of methylated/silenced cell lines with DNA methyltransferase inhibitor 5’-aza-2’-deoxycytidine resulted in HES gene re-expression. Finally, forced re-expression of HES5 and HES6 in methylation silenced Rs4 and REH cell lines inhibited cell growth. These results suggest that the Notch/HES signaling pathway is epigenetically-inactivated in B ALL. These data support the role of the HES family as tumor suppressors in pre-B ALL and establish epigenetic modulation as a novel mechanism of Notch pathway regulation. We anticipate that therapies capable of activating Notch/HES signaling may have therapeutic potential in B cell leukemias.


Blood ◽  
1981 ◽  
Vol 58 (3) ◽  
pp. 648-652 ◽  
Author(s):  
J Ritz ◽  
LM Nadler ◽  
AK Bhan ◽  
J Notis-McConarty ◽  
JM Pesando ◽  
...  

Abstract Previous studies have demonstrated that the common acute lymphoblastic leukemia antigen (CALLA) is expressed by leukemic cells from approximately 80% of patients with non-T-cell ALL and 30%-50% of patients with chronic myelocytic leukemia in blast crisis. A small number of normal bone marrow and fetal liver cells also express CALLA, but the functional role of this molecule is unknown. In the present study, we have used a monoclonal antibody (J5) specific for CALLA to study the expression of this antigen in non-Hodgkin's lymphomas. Within the B-cell lymphomas, it was found the CALLA was expressed by almost all Burkitt's and nodular poorly differentiated lymphocytic lymphomas. Within the T-cell lymphomas, CALLA was expressed in 40% of patients with lymphoblastic lymphoma. Three of 3 Burkitt's lymphoma cell lines and three of eight T-lymphoblast cell lines were also found to express CALLA. Normal spleen, lymph node, and thymus cells were not reactive with J5 antibody. These findings indicate that expression of CALLA is not limited to relatively undifferentiated leukemic lymphoblasts but also occurs in more differentiated lymphoid malignancies. However, normal differentiated lymphoid cells in lymph node, spleen, and thymus, which have a phenotype similar to that of lymphoma cells, do not appear to express CALLA.


2019 ◽  
Vol 8 ◽  
Author(s):  
Masoumeh Abedi Nejad ◽  
Mohsen Nikbakht ◽  
Masoomeh Afsa ◽  
Kianoosh Malekzadeh

Background: Acute lymphoblastic leukemia (ALL) is a highly prevalent pediatric cancer accounting for approximately 78% of leukemia cases in patients younger than 15 years old. Different studies have demonstrated that B-cell translocation gene 3 (BTG3) plays a suppressive role in the progress of different cancers. Genistein is considered a natural and biocompatible compound and a new anti-cancer agent. In this study, we evaluate the effect of genistein on BTG3 expression and proliferation of ALL cancer cells. Materials and Methods: ALL cell lines (MOLT4, MOLT17, and JURKAT) were cultured in standard conditions. Cytotoxicity of genistein was detected using MTT assay. The cells were treated with different concentrations of genistein (10, 25, 40, and 55μM) for 24, 48, and 72 hours, and then cell viability and growth rate were measured. The quantitative real-time polymerase chain reaction was applied to investigate the effect of genistein on BTG3 expression. Results: The percentage of vital cells treated with genistein significantly decreased compared to the non-treated cells, showed an inverse relationship with an increasing genistein concentration. The present study suggests a dose of 40μM for genistein as a potent anticancer effect. Genistein could elevate BTG3 for 1.7 folds in MOLT4 and JURKAT and 2.7 folds in MOLT17 cell lines at transcription level conveged with 60 to 90% reduction in the proliferation rate of cancer cells. Conclusion: Up-regulation of BTG3 as a tumor suppressor gene can be induced by genistein. It seems that BTG3 reactivation can be introduced as another mechanism of anti-proliferative effect of genistein and could be considered as a retardant agent candidate against hematopoietic malignancy.[GMJ. 2019;inpress:e1229]


2021 ◽  
Vol 22 (3) ◽  
pp. 1388
Author(s):  
Natalia Maćkowska ◽  
Monika Drobna-Śledzińska ◽  
Michał Witt ◽  
Małgorzata Dawidowska

Distinct DNA methylation signatures, related to different prognosis, have been observed across many cancers, including T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematological neoplasm. By global methylation analysis, two major phenotypes might be observed in T-ALL: hypermethylation related to better outcome and hypomethylation, which is a candidate marker of poor prognosis. Moreover, DNA methylation holds more than a clinical meaning. It reflects the replicative history of leukemic cells and most likely different mechanisms underlying leukemia development in these T-ALL subtypes. The elucidation of the mechanisms and aberrations specific to (epi-)genomic subtypes might pave the way towards predictive diagnostics and precision medicine in T-ALL. We present the current state of knowledge on the role of DNA methylation in T-ALL. We describe the involvement of DNA methylation in normal hematopoiesis and T-cell development, focusing on epigenetic aberrations contributing to this leukemia. We further review the research investigating distinct methylation phenotypes in T-ALL, related to different outcomes, pointing to the most recent research aimed to unravel the biological mechanisms behind differential methylation. We highlight how technological advancements facilitated broadening the perspective of the investigation into DNA methylation and how this has changed our understanding of the roles of this epigenetic modification in T-ALL.


Sign in / Sign up

Export Citation Format

Share Document