Red Blood Cells Preserve Platelet Function and Coagulation From The Effects Of Acidemia

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4765-4765
Author(s):  
James E Campbell ◽  
Melanie V Valeciana ◽  
Armando C Rodriguez ◽  
James K Aden ◽  
Michael A Meledeo ◽  
...  

Despite a large body of literature regarding Acute Coagulopathy of Trauma and Massive Transfusion, there is little consensus on the appropriate diagnostic approach to establish the cause of associated uncontrolled bleeding. Thromboelastography (TEG) is widely used to characterize trauma-associated bleeding. However, the use of whole blood in this assay may obscure important changes in blood component hemostatic function. Blood varies in hematocrit from a typical level of 40% in large vessels to 10% in capillaries. Patients with persistent bleeding may present with prolonged prothrombin time (PT)/activated partial thromboplastin time (aPTT) measured in plasma, but unremarkable TEG tracings measured in whole blood drawn from a large vein. As one of the only ubiquitously accepted causes of a bleeding coagulopathy associated with trauma, acidemia was modeled in TEG to investigate 1) the differential coagulopathy detection obtained by separation of blood components before TEG testing, 2) the range of acidemia effects at various levels of the vascular tree through variable hematocrit testing, and 3) effects of replacing RBCs with plasma versus normal saline. Male donor blood (n=5) was drawn into citrate and the contact pathway was immediately further inhibited with corn trypsin inhibitor. TEG cups were preloaded with appropriate volumes of [morpholino]ethanesulfonic acid buffered saline (MBS) for pH 7.4, pH 7.1, pH 6.8 and were recalcified (15mM). R-time parameters were not significantly different when whole blood (WB) or red blood cells combined with platelet poor plasma (RBC/PPP) were activated to clot with tissue factor (1:5000 dilution induced a normal 4 minute clot time) in the simulated acidemia, whereas platelet poor plasma (PPP) showed a significant delay at pH 7.1 (p<0.0001) and pH 6.8 (p<0.0001) when compared to pH 7.4. Shear Elastic Modulus Strength showed only significant losses in platelet rich plasma (PRP: pH 7.4 vs pH 7.1; p=0.013, pH 7.1 vs pH 6.8; p=0.015) but not WB, RBC/PPP, or PPP. Hematocrit levels were chosen to model typical changes from large to small vessels, in the presence of 200,000 platelets/microliter, where the volume of RBCs was replaced with plasma. Results indicate that zero hematocrit conditions result in a significant R-time delay (pH 7.4 vs pH 7.1; p=0.0306, pH 7.1 vs pH 6.8; p<0.0001) whereas no significant delays occur at 20%, 30%, and 40% hematocrit. Utilization of normal saline for RBC replacement did not alter any of the 20%, 30%, or 40% hematocrit R-time findings yet zero % hematocrit samples (pH 7.1; 12.9+/-1.64 minutes, pH 6.8; 34.98+/-4.03 minutes) were significantly delayed (p<0.0001) when compared to plasma replacement of RBC (pH 7.1; 8.22+/-0.70 minutes, pH 6.8;13.98+/-1.54 minutes). Subsequent biochemical evaluation of whole blood (n=5) activated to clot in conditions of acidemia (pH 7.4, pH 7.1, pH 6.8) showed no significant delay or reduced peak of thrombin generation, no significant difference in factor V activation or fibrinopeptide A cleavage. Data indicate that 1) separation of blood components allows a more sensitive parsing mechanism for TEG evaluation of coagulation in acidemia, 2) simulated capillary blood containing low hematocrit demonstrates the anti-coagulant effects of acidemia obscured in whole blood from large vessels with normal hematocrit, 3) resuscitation with normal saline may exacerbate microvascular bleeding in the acidemic patient, and 4) RBCs prevent delays in clot initiation and loss of platelet force generation in the presence of acidemia. This work provides a mechanism to explain the observation that increased hematocrit reduces microvascular bleeding. Disclosures: No relevant conflicts of interest to declare.

2018 ◽  
Vol 9 (2) ◽  
pp. 142-147
Author(s):  
Shanaz Karim ◽  
Ehteshamul Hoque ◽  
Md Mazharul Hoque ◽  
Syeda Masooma Rahman ◽  
Kashfia Islam

Transfusion medicine has undergone advancements since its initiation in the early 20th century. One of these was the discovery that blood can be divided into individual components and delivered separately. Today, blood transfusions nearly always consist of the ad-ministration of 1 or more components of blood. Whole blood transfusion is now limited to situations involving massive resuscitation (trauma ) The most familiar cellular components include packed red blood cells (PRBC), washed PRBC, leukoreduced PRBC and pooled or aphaeresis platelets. Plasma products such as FFP or cryoprecipitate, ant hemophilic factor (CRYO). The transfusion of red blood cells (RBCs), platelets, fresh-frozen plasma (FFP), and cryoprecipitate has the potential of improving clinical outcomes in perioperative and peripartum settings. These benefits include improved tissue oxygenation and decreased bleeding. However, transfusions are not without risks or costs. With the advent of blood component therapy, each unit of whole blood collected serves the specific needs of several, rather than a single patient.Anwer Khan Modern Medical College Journal Vol. 9, No. 2: Jul 2018, P 142-147


2020 ◽  
Vol 7 (6) ◽  
pp. 1424
Author(s):  
Vaishnavi Iyengar ◽  
Anjali Parekh ◽  
Sanjay Natu

Background: Audit of transfusion practices in pediatric patients was performed to study indications, clinical profile and whether transfusions were in accordance to guidelines.Methods: Retrospective analysis of all episodes of transfusions from a tertiary care centre was done. The study period was from January 2018 to December 2018.Patients in the age group of 4 months to 12 years were enrolled in the study. The data was reviewed according to the British Committee for Standards in Haematology guidelines for transfusion.Results: During the study period of 12 months,168 units of hemocomponents were transfused to children, 66.07% (111/168) of the total products transfused were packed red cell units, followed by 36 units (21.42%) of fresh frozen plasma and 21 units (12.5%) platelets. Overall usage of blood components was found to be appropriate in 58.33% (98/111). Red blood cells were the most appropriately transfused (64.86 %) (72 units out of 111) blood product as compared to 42.85% of platelets (9/21) and 47.22% of FFP (17/36).Conclusions: Most frequently transfused blood components are red blood cells in pediatrics. Inappropriate transfusion of blood components is hinders the utility of this valuable resource, Thus it becomes necessary to conduct regular audit of blood component transfusion for optimum utilization.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2884-2884
Author(s):  
Fabiola G. Rizzatti ◽  
David Stroncek ◽  
Melissa Qazi ◽  
Nathawut Sibmooh ◽  
Barbora Piknova ◽  
...  

Abstract The important role of erythrocytes in nitric oxide (NO) physiology changed the traditional view of the red blood cells (RBC) as only a carrier of oxygen and carbon monoxide. Nitrite is a primary oxidative NO metabolite and is considered a major intravascular storage pool for NO. In the vascular system, erythrocytes are the major storage sites of nitrite, which can be activated to NO by deoxyhemoglobin, but also are responsible for its rapid destruction after reaction with oxyhemoglobin.The purpose of this study was to quantify the nitric oxide metabolites, nitrite and nitrate, in red blood cells (RBCs) stored as packed cells or whole blood and to evaluate their levels with the time of storage. Whole blood, leukoreduced, and non-leukoreduced packed RBCs were obtained from healthy volunteer donors and were stored in polyvinyl chloride (PVC) bags to up to 42 days at 4°C. Sequential aliquots were taken from the bags using a liquid transfer set to maintain sterile conditions. Nitrite and nitrate were measured in the whole blood and in RBC components using reductive gas phase chemiluminescence. Nitrite concentrations decreased during the storage in the three blood components analyzed. The nitrite concentration in RBCs before storage was 202±45 nM, but fell rapidly upon storage. In the leukoreduced RBCs, nitrite levels were 81±36 nM on day 1 and 51±8 nM on day 42. The concentration of nitrate remained stable during blood storage, 30±14 uM on day 1 and 33±5 uM on day 42 of storage. The pH decreased slightly in all three blood components during storage, from pH 6.7±0.05 on day 1 to 6.5±0 on day 42. The blood pO2 before storage was 40.5±1.5 and increased to 251±4 mmHg on day 42, presumably due to the diffusion of oxygen from the room air. In control experiments, PVC bags were filled with normal saline used for medical purposes and stored up to 42 days at 4°C in room air; nitrite concentrations gradually increased while nitrate values remained stable. Similar results were observed for nitrite and nitrate concentrations in the non-leukoreduced RBCs and whole blood. Both cells and saline controls maintained in an argon chamber at 4°C for 42 days showed decreased levels of nitrite when compared to the bags stored in room air under the same temperature. Our results show that nitrite levels fall in hemocomponents during blood bank storage, nitrate remains stable, while pH decreases and pO2 increases. The decrease in nitrite levels could be explained either by its reaction with oxyhemoglobin, resulting in nitrate and methemoglobin, or with deoxyhemoglobin. The diffusion of oxides of nitrogen gases through the PVC bags could in part explain why nitrite levels do not completely disappear in the RBCs stored for transfusion, under standard transfusion medicine conditions. As erythrocytes may contribute to the control of blood flow and oxygen delivery through reduction of nitrite to NO under hypoxic conditions, our findings may provide insight into the vasodynamic effects of blood transfusion. These measurements of NO derivatives may have implication for transfusion therapy, explaining some adverse effects of RBC transfusion and/or optimizing the preservation of stored hemocomponents.


2020 ◽  
Author(s):  
Egarit Noulsri ◽  
Surada Lerdwana ◽  
Duangdao Palasuwan ◽  
Attakorn Palasuwan

Abstract Objective To determine the number of cell-derived microparticles (MPs) in blood products obtained from donors who have thalassemia. Methods Packed red blood cells (PRBCs), plasma, and platelet concentrate (PC) were prepared according to routine procedures. We used flow cytometry to quantitate the concentration of MPs. Results The results of a comparison of MP levels in unprocessed whole blood showed that the concentration of all MPs in the donors without thalassemia trait (n = 255) was higher than in donors with thalassemia trait (n = 70). After processing, increased concentrations of MPs were documented in both groups. Among the blood components, PRBC showed higher platelet-derived MP concentrations in donors with thalassemia than in donors without thalassemia. However, PC showed higher concentrations of total MPs in donors without thalassemia than in donors with that condition. Conclusions Our results suggest little influence of thalassemia-trait status on changes in MP concentrations in blood components.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 221 ◽  
Author(s):  
Vera Sousa ◽  
Ana T. P. C. Gomes ◽  
Américo Freitas ◽  
Maria A. F. Faustino ◽  
Maria G. P. M. S. Neves ◽  
...  

The few approved disinfection techniques for blood derivatives promote damage in the blood components, representing risks for the transfusion receptor. Antimicrobial photodynamic therapy (aPDT) seems to be a promising approach for the photoinactivation of pathogens in blood, but only three photosensitizers (PSs) have been approved, methylene blue (MB) for plasma and riboflavin and amotosalen for plasma and platelets. In this study, the efficiency of the porphyrinic photosensitizer Tri-Py(+)-Me and of the porphyrinic formulation FORM was studied in the photoinactivation of Candida albicans in plasma and in whole blood and the results were compared to the ones obtained with the already approved PS MB. The results show that FORM and Tri-Py(+)-Me are promising PSs to inactivate C. albicans in plasma. Although in whole blood the inactivation rates obtained were higher than the ones obtained with MB, further improvements are required. None of these PSs had promoted hemolysis at the isotonic conditions when hemolysis was evaluated in whole blood and after the addition of treated plasma with these PSs to concentrates of red blood cells.


Perfusion ◽  
2002 ◽  
Vol 17 (5) ◽  
pp. 357-362 ◽  
Author(s):  
N Nitescu ◽  
A Bengtsson ◽  
J P Bengtson

Background: Red blood cells may be destroyed by autotransfusion processing during intraoperative salvage. The aim of the present study was to evaluate the blood component recovery rate of techniques built on either continuous centrifugation and washing, or haemofiltration (HF). Methods: Two different methods used in blood salvage - red cell salvage with continuous processing with centrifugation and saline washing (Continuous Auto Transfusion System, CATS) and whole blood recirculation through a 30000-Da filter, i.e., HF - were compared in a randomized laboratory study using donor whole blood activated by cobra venom factor. The recovery of red blood cells, haemoglobin, free haemoglobin, leucocytes, platelets, albumin, total protein and potassium was measured. Results: The recovery of red cells was 86% with CATS and 76% with HF. HF had a significantly higher recovery of leucocytes (CATS 20%, HF 63%), platelets (CATS 4%, HF 37%), albumin (CATS 0.2%, HF 70%), total protein (CATS 1.3%, HF 71%) and potassium (CATS 2%, HF 17%). Less than 1% haemolysis was obtained in processed blood from both groups. Conclusion: Both methods caused little destruction of the red blood cells during processing. There was a larger reinfusion of leucocytes, platelets, albumin, total protein and extracellular potassium when HF was used compared with the ‘CATS’ method.


2021 ◽  
Author(s):  
Benjamaporn Supawat ◽  
Watcharit Vorasiripreecha ◽  
Sakornniya Wattanapongpitak ◽  
Suchart Kothan ◽  
Montree Tungjai

Abstract This current study was to determine the effects of in vitro exposure to radioactive cesium-137 on some human blood components (Plasma and red blood cells). Blood samples were given a radiation dose of 0.02, 0.05, 0.1, 0.2, and 0.3 mGy of gamma rays using a 137Cs radioactive standard source. The blood samples that were exposed to 0 mGy served as sham-controls. The spectrofluoroscopic technique was used to determine the autofluorescence spectrum of protein in plasma or red blood cells by using excitation wavelength and range of emission wavelengths at 280 nm and 300-550 nm, respectively. The spectrophotometric technique was used to determine the release of hemoglobin from the red blood cells to the supernatant. This data indicated no change in the ratio of fluorescence emission intensity at 340 nm of wavelength of protein extract from irradiated whole blood or red blood cells compared to the corresponding non-irradiated control. The results did not change in the absorption intensity at 415 nm of wavelength of hemoglobin leakage from in vitro irradiated red blood cells when compared to the corresponding non-irradiated red blood cells. These current results suggested that there were no harmful effects of the low-dose gamma rays from radioactive 137Cs on some blood components when human whole blood was exposed to gamma rays in an in vitro condition.


2021 ◽  
pp. 1-10
Author(s):  
Rui Zhong ◽  
Dingding Han ◽  
Xiaodong Wu ◽  
Hong Wang ◽  
Wanjing Li ◽  
...  

Background: The hypoxic environment stimulates the human body to increase the levels of hemoglobin (HGB) and hematocrit and the number of red blood cells. Such enhancements have individual differences, leading to a wide range of HGB in Tibetans’ whole blood (WB). Study Design: WB of male Tibetans was divided into 3 groups according to different HGB (i.e., A: >120 but ≤185 g/L, B: >185 but ≤210 g/L, and C: >210 g/L). Suspended red blood cells (SRBC) processed by collected WB and stored in standard conditions were examined aseptically on days 1, 14, 21, and 35 after storage. The routine biochemical indexes, deformability, cell morphology, and membrane proteins were tested. Results: Mean corpuscular volume, adenosine triphosphate, pH, and deformability were not different in group A vs. those in storage (p > 0.05). The increased rate of irreversible morphology of red blood cells was different among the 3 groups, but there was no difference in the percentage of red blood cells with an irreversible morphology after 35 days of storage. Group C performed better in terms of osmotic fragility and showed a lower rigid index than group A. Furthermore, SDS-PAGE revealed similar cross-linking degrees of cell membrane protein but the band 3 protein of group C seemed to experience weaker clustering than that of group A as detected by Western Blot analysis after 35 days of storage. Conclusions: There was no difference in deformability or morphological changes in the 3 groups over the 35 days of storage. High HGB levels of plateau SRBC did not accelerate the RBC change from a biconcave disc into a spherical shape and it did not cause a reduction in deformability during 35 days of preservation in bank conditions.


Author(s):  
Christina Berens ◽  
Johannes Oldenburg ◽  
Bernd Pötzsch ◽  
Jens Müller

AbstractObjectivesAnalysis of platelet glycoprotein (GP) expression by flow cytometry is applied for diagnostic confirmation of GP-associated thrombocytopathies. While platelet-rich plasma may be used for distinct identification of target events, this strategy is not feasible for small sample volumes or for patients showing low platelet counts and/or giant platelets. However, also the use of whole blood (WB) is hampered by the difficulty to discriminate platelets from red blood cells (RBC) in such patients. To circumvent these limitations, we evaluated the feasibility of a RBC gating-out strategy.MethodsIn addition to platelet GPIb, GPIIa/IIIa, as well as P-selectin (CD62P), citrated whole blood (CWB) samples were stained for RBC-specific glycophorin A (CD235a). CD235a-negative platelet events were further discriminated by forward-/side-scatter characteristics and platelet GP expressions analyzed relative to that of a healthy control sample processed in parallel.ResultsEstablished reference intervals allowed for clear identification of decreased GPIIb/IIIa- or GPIb expression pattern in samples of patients with confirmed Glanzmann thrombasthenia or Bernard–Soulier syndrome, respectively. It could be shown that the analysis of 2,500 platelet events is sufficient for reliable GP expression analysis, rendering the proposed method applicable to samples with low platelet counts.ConclusionsThis study demonstrates the feasibility of CD235a-based exclusion of RBC for platelet GP expression analysis in CWB. In contrast to direct staining of platelet-specific antigens for target identification, this indirect gating out approach is generally applicable independent of any underlying platelet GP expression deficiency.


Diagnostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Anastasia Maslianitsyna ◽  
Petr Ermolinskiy ◽  
Andrei Lugovtsov ◽  
Alexandra Pigurenko ◽  
Maria Sasonko ◽  
...  

Coronary heart disease (CHD) has serious implications for human health and needs to be diagnosed as early as possible. In this article in vivo and in vitro optical methods are used to study blood properties related to the aggregation of red blood cells in patients with CHD and comorbidities such as type 2 diabetes mellitus (T2DM). The results show not only a significant difference of the aggregation in patients compared to healthy people, but also a correspondence between in vivo and in vitro parameters. Red blood cells aggregate in CHD patients faster and more numerously; in particular the aggregation index increases by 20 ± 7%. The presence of T2DM also significantly elevates aggregation in CHD patients. This work demonstrates multimodal diagnostics and monitoring of patients with socially significant pathologies.


Sign in / Sign up

Export Citation Format

Share Document