Cardiac Derived Stromal Cells Inhibit Tumor Cell Proliferation: A Potential Role Of miR206

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4861-4861
Author(s):  
Ian K. McNiece ◽  
Santhosh Sivajothi

Abstract Stromal cells play an important role in control of proliferation and differentiation of stem cells and are a key component of the stem cell niche. Bone marrow (BM) stromal cells (also termed mesenchymal stem cells; MSC) have been extensively studied and shown to control differentiation of hematopoietic stem cells (HSCs) in part through secreted growth factors. Recent studies have demonstrated the presence of stromal cells in cardiac tissue, however the role of cardiac stromal cells (CStrC) is unclear. In this study we have compared human CStrCs to human BM-MSCs and demonstrate that CStrCs have a similar morphology and surface marker expression as BM-MSCs. To further characterize the CStrCs we performed micro array analysis of human CStrCs compared to human BM-MSCs. The CStrCs expressed a distinct cytokine and cytokine receptor profile compared to BM-MSC. In addition, a number of micro RNAs were expressed at very high levels in CStrCs compared to BM-MSC. Cardiac- associated microRNAs, including miR-1, miR-133a, and miR-206 were expressed at higher levels in CStrCs compared to BM-MSC. Given the lack of tumor development in cardiac tissue we hypothesized that CStrCs would fail to support tumor cell growth which has been described for BM-MSCs. Therefore, we cultured human tumor cell lines on CStrCs and compared the tumor cell proliferation to BM-MSCs. CStrCs inhibited the proliferation of a range of tumor cell lines including myeloid cell lines HL60, K562, myeloma cell lines U-266, RPMI 8266, ARP-1 and the B cell line Raji, while BM-MSCs supported the proliferation of tumor cells. Further we tested media conditioned by CStrCs and demonstrated inhibition of proliferation of both cell lines. Previous studies have implicated miR-206 in inhibition of proliferation of tumor cells and given the high levels of expression of miR-206 in CStrCs we hypothesize that miR-206 is a key player in the inhibitory effects of CStrCs and this effect is mediated via secreted molecules. Disclosures: McNiece: Proteonomix Inc: Consultancy.

Author(s):  
Ruohang He ◽  
Chaoqun Han ◽  
Ying Li ◽  
Wei Qian ◽  
Xiaohua Hou

BackgroundMesenchymal stem cells (MSCs) treatment showed promising results in inflammatory bowel disease in both rodent models and patients. Nevertheless, previous studies conducted conflicting results on preclinical tumor models treated with MSCs concerning their influence on tumor initiation and progression. This study is designed to demonstrate the role of bone marrow-derived MSCs and the potential mechanism in the colitis-associated colon cancer (CAC) model.MethodsBone marrow-derived MSCs were isolated from green fluorescent protein-transgenic mice, cultured, and identified by flow cytometry. Azoxymethane and dextran sulfate sodium were administrated to establish the CAC mouse model, and MSCs were infused intraperitoneally once per week. The mice were weighed weekly, and colon length, tumor number, and average tumor size were assessed after the mice were killed. MSC localization was detected by immunofluorescence staining; tumor cell proliferation and apoptosis were measured by immunohistochemistry staining of Ki-67 and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay, respectively. The colonic tumor tissues were isolated for RNA-seq, and fecal samples were collected for 16S ribosomal RNA sequencing of the microbiome.ResultsAfter injection intraperitoneally, MSCs migrated to the intestine and inhibited the initiation of colitis-associated colorectal cancer. This inhibition effect was marked by less weight loss, longer colon length, and reduced tumor numbers. Moreover, MSCs reduced tumor cell proliferation and induced tumor cell apoptosis. Furthermore, MSCs could inhibit chronic inflammation assessed by RNA-sequencing and promote gut microbiome normalization detected by 16S ribosomal RNA sequencing.ConclusionThe results proved that MSCs could migrate to the colon, inhibit chronic inflammation, and regulate gut microbiome dysbiosis to suppress the development of CAC.


2004 ◽  
Vol 9 (3) ◽  
pp. 216-222 ◽  
Author(s):  
Kaumudi M. Bhawe ◽  
Robert A. Blake ◽  
Douglas O. Clary ◽  
Peter M. Flanagan

To facilitate the characterization of proteins that negatively regulate tumor cell proliferation in vitro, the authors have implemented a high-throughput functional assay that measures S-phase progression of tumor cell lines. For 2 tumor cell lines—human melanoma A375 and human lung carcinoma A549—conditions were established using the cyclin-dependent kinase inhibitor, p27kip; the tumor suppressor p53, a kinase-inactive allele of the cell cycle-regulated serine/threonine kinase Aurora2; and the G1/S drug block, aphidicolin. For screening purposes, gene libraries were delivered by adenoviral infection. Cells were fixed and labeled by immunocytochemistry, and an automated image acquisition and analysis package on a Cellomics ArrayScan®II was used to quantify the effects of these treatments on cell proliferation. The assay can be used to identify novel proteins involved in proliferation and serves as a more robust, reproducible, and sensitive alternative to enzyme-linked immunosorbent assay (ELISA)-based technologies.


RSC Advances ◽  
2019 ◽  
Vol 9 (63) ◽  
pp. 36690-36698
Author(s):  
Qian Zhang ◽  
Ying Fu ◽  
Yufan Zhao ◽  
Shanshan Cui ◽  
Jing Wang ◽  
...  

5-Acetamido-1-(methoxybenzyl) isatin inhibited the proliferation, migration, and angiogenesis of several tumor cell lines in vitro.


2021 ◽  
Vol 22 (5) ◽  
pp. 2771
Author(s):  
Anna Richter ◽  
Elisabeth Fischer ◽  
Clemens Holz ◽  
Julia Schulze ◽  
Sandra Lange ◽  
...  

Aberrant PI3K/AKT signaling is a hallmark of acute B-lymphoblastic leukemia (B-ALL) resulting in increased tumor cell proliferation and apoptosis deficiency. While previous AKT inhibitors struggled with selectivity, MK-2206 promises meticulous pan-AKT targeting with proven anti-tumor activity. We herein, characterize the effect of MK-2206 on B-ALL cell lines and primary samples and investigate potential synergistic effects with BCL-2 inhibitor venetoclax to overcome limitations in apoptosis induction. MK-2206 incubation reduced AKT phosphorylation and influenced downstream signaling activity. Interestingly, after MK-2206 mono application tumor cell proliferation and metabolic activity were diminished significantly independently of basal AKT phosphorylation. Morphological changes but no induction of apoptosis was detected in the observed cell lines. In contrast, primary samples cultivated in a protective microenvironment showed a decrease in vital cells. Combined MK-2206 and venetoclax incubation resulted in partially synergistic anti-proliferative effects independently of application sequence in SEM and RS4;11 cell lines. Venetoclax-mediated apoptosis was not intensified by addition of MK-2206. Functional assessment of BCL-2 inhibition via Bax translocation assay revealed slightly increased pro-apoptotic signaling after combined MK-2206 and venetoclax incubation. In summary, we demonstrate that the pan-AKT inhibitor MK-2206 potently blocks B-ALL cell proliferation and for the first time characterize the synergistic effect of combined MK-2206 and venetoclax treatment in B-ALL.


2021 ◽  
Vol 50 (3) ◽  
pp. 28-30
Author(s):  
A. F. Urmancheeva ◽  
D. R. Zel'dovich ◽  
M. S. Shushania ◽  
A. V. Safronov

Peritoneal cytological investigation was carried out inpatients with endometrial cancer, who were subjected to hysteroscopy before the operation (37patients) or were operated on without hysteroscopy. Comparative analysis of the data didnt reveal the role of hysteroscopy in tumor cell dissemination.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4350
Author(s):  
Jessica Castro ◽  
Giusy Tornillo ◽  
Gerardo Ceada ◽  
Beatriz Ramos-Neble ◽  
Marlon Bravo ◽  
...  

Despite the significant advances in cancer research made in recent years, this disease remains one of the leading causes of death worldwide. In part, this is due to the fact that after therapy, a subpopulation of self-renewing tumor cells can survive and promote cancer relapse, resistance to therapies and metastasis. Targeting these cancer stem cells (CSCs) is therefore essential to improve the clinical outcome of cancer patients. In this sense, multi-targeted drugs may be promising agents targeting CSC-associated multifocal effects. We have previously constructed different human pancreatic ribonuclease (RNase) variants that are cytotoxic for tumor cells due to a non-classical nuclear localization signal introduced in their sequence. These cytotoxic RNases affect the expression of multiple genes involved in deregulated metabolic and signaling pathways in cancer cells and are highly cytotoxic for multidrug-resistant tumor cell lines. Here, we show that these cytotoxic nuclear-directed RNases are highly selective for tumor cell lines grown in 3D, inhibit CSCs’ development and diminish the self-renewal capacity of the CSCs population. Moreover, these human RNase variants reduce the migration and invasiveness of highly invasive breast cancer cells and downregulate N-cadherin expression.


2013 ◽  
Vol 8 (6) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Ilina Krasteva ◽  
Maya Yotova ◽  
Kristina Jenett-Siems ◽  
Petranka Zdraveva ◽  
Stefan Nikolov

A new sulfated triterpeniod saponin, 3- O-sulfooleanolic acid 28- O-[ β-glucopyranosyl-(1→3)]-[ β-glucopyranosyl-(1→6)]- β-glucopyranosyl ester (1), along with three known Δ7-sterols: stigmast-7-en-3 β-ol (2), stigmast-7-en-3- O-β-D-glucopyranoside (3) and stigmast-7-en-3-on (4) were isolated from the roots of Gypsophila trichotoma Wend. (Caryophyllaceae). Their structures were elucidated by chemical and spectral methods. Compound 1 caused concentration-dependent inhibition of malignant cell proliferation against different human tumor cell lines.


2009 ◽  
Author(s):  
Katarzyna Miekus ◽  
Danuta Jarocha ◽  
Elzbieta Trzyna ◽  
Marcin Majka

Sign in / Sign up

Export Citation Format

Share Document