Targeting FOXM1 Transcription Factor In T-Cell Acute Lymphoblastic Leukemia

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4974-4974 ◽  
Author(s):  
Özlem Tüfekçi ◽  
Melis Kartal Yandım ◽  
Hale Ören ◽  
Gülersu Irken ◽  
Yusuf Baran

Abstract The Forkhead box protein M1(FoxM1) is an important  transcriptional factor that takes play in regulation of cell cyle, proliferation, DNA repair, apoptosis, and angiogenesis. FoxM1 overexpression has been reported to be related with many types of cancer. Since many studies have reported that FOXM1 is an important target for cancer therapy, many researchers are studying on the identification of FOXM1 inhibitors. Siomycin A, a thiazol antibiotic, is known to inhibit FoxM1 transcriptional activity. Dexamethasone is a glucocorticoid  that is very important in treatment of acute lymphoblastic leukemia (ALL) and is known to be more potent compared to other steroids in the treatment of T-cell ALL. In this study, our aims were to determine the gene expression levels of FoxM1 in Jurkat cells (T-ALL cell line), to find out the possible synergistic and apoptotic effects of siomycin A and dexamethasone on this cell line and to investigate the changes in expression profiles of some important genes that have vital roles in cellular processes by targeting FoxM1 with siomycin A and dexamethasone on Jurkat cells. The gene expression levels of FoxM1 were studied with reverse transcriptase polymerase chain reaction (RT-PCR). The cytotoxic effects of siomycin  A and dexamethasone on Jurkat cells were assesed by MTT cell proliferation test.  The possible synergistic, additive, neutral, and antagonistic effect of combination of  dexamethasone and siomycin A was determined with isobologram analysis.  The apoptotic effects of these two agents were evaluated by  Caspase-3 activity, loss of mitochondrial membrane potential and localisation of phosphatidilserine on plasma membrane. For this purpose, Caspase-3 calorimetric assay kit, JC-1 mitochondrial membrane potential assay kit, and Annexin V-FITC apoptosis detection kit were used, respectively. For cell cycle analysis, Jurkat cells treated with siomycin A alone or in combination with dexamethasone were stained by propidium iodide and then analyzed by flow cytometry. Expression profiles of Jurkat cells treated with siomycin A alone or in combination with dexamethasone were determined by Cancer Pathway Finder PCR Array. We found that FoxM1 gene is overexpressed in T-ALL cell line and dexamethasone and siomycin A caused a reduction in gene expression levels of FoxM1 in Jurkat cells. 8% to 13% decrease in proliferation of Jurkat cells were observed when these cells were treated with 1 and 10 µM doses of dexamethasone for 72 hours, respectively. The same doses of dexamethasone combined with siomycin A caused 74% and 75% decrease in proliferation of Jurkat cells. Isobologram analysis revealed very strong synergy between dexamethasone and siomycin A. Apoptotic tests showed no apoptotic activity of dexamethasone and siomycin A on Jurkat cells. Cell cycle analysis demonstrated that, reduction of FOXM1 expression by combination of dexamethasone and siomycin A in Jurkat cells inhibited cell proliferation through induction of G1 phase arrest. PCR Array results showed that apoptotic CASPASE-2, CASPASE-7, and CASPASE-9 genes and XIAP and CYCLIN D3 genes were upregulated in response to the treatment. ETS2 gene, which is known as a protooncogene and shown to be involved in regulation of telomerase, was downregulated in response to siomycin A and dexamethosone alone and in combined treatment. TERF1 gene, which inhibits telomerase activity, was upregulated by the treatment. Combination of Siomycin A and dexamethasone downregulated the MCM-2 gene, which is a key component of the pre-replication complex and involved in the formation of DNA replication fork. Moreover, combined treatment resulted in the downregulation of MKI67 gene encoding a nuclear protein associated with  cellular proliferation. WEE1 gene, which inhibits G2/M phase transition in cell cycle, was also upregulated. These data indicate that FoxM1 gene is strongly overexpressed in T-ALL cell line and targeting FoxM1 by siomycin A and dexamethasone causes a significant decrease in T-ALL cell proliferation through induction of  G1 cell cycle arrest. Importantly, PCR array analyses also showed that siomycin A and dexamethasone treatment affects Jurkat cells via upregulating or downregulating the key genes of cell cycle, apoptosis, cell proliferation, telomere, and telomerase function. All these findings suggest a possible role for FoxM1 in T-ALL pathogenesis and represent FoxM1 as an attractive target for T-ALL therapy. Disclosures: No relevant conflicts of interest to declare.

2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Joanna Stafiej ◽  
Karolina Kaźmierczak ◽  
Katarzyna Linkowska ◽  
Paweł Żuchowski ◽  
Tomasz Grzybowski ◽  
...  

Purpose. To evaluate the expression profiles of the VEGFα and TGFβ in the ERMs and ILMs in retinal disorders. Methods. In this nonrandomized prospective study, 75 patients (34 females and 41 males) referred to pars plana vitrectomy (PPV) due to different retinal diseases were enrolled to the study. The samples of ERMs and ILMs collected during PPV were immediately put in TRIzol® Reagent (Life Technologies, USA) and stored at −70°C until RNA extraction. Gene expression analysis was done with TaqMan® Gene Expression Assays (Applied Biosystems, USA) following the manufacturer’s instructions. Results. The gene expression levels of VEGFα as well as of TGFβ2 were significantly higher in ERMs than in ILMs in all studied groups. The level of TGFβ2 expression exhibits a significantly lower values in iERMs as compared with the RRD group (p=0.043). There were differences in TGFβ2 expression in ILM in groups studied: DR versus RRD, p=0.003; DR versus iERM, p=0,047; and iERM versus RRD, p=0.004. Conclusions. Our results revealed that factors associated with angiogenesis and wound healing processes in eyes with RRD, PDR, iERM, and MH were more upregulated in ERMs than in ILMs. This may indicate that ILM is not responsible for reproliferation and its peeling should be avoided in routine PPV.


2012 ◽  
Vol 90 (9) ◽  
pp. 1059-1071 ◽  
Author(s):  
Laia Navarro-Martín ◽  
Chantal Lanctôt ◽  
Christopher Edge ◽  
Jeff Houlahan ◽  
Vance L. Trudeau

Numerous studies using laboratory-reared tadpoles have shown the importance of thyroid hormones (TH), thyroid receptors (TR), and deiodinase (Dio) enzymes during anuran metamorphosis. Our study focuses on the analysis of thyroid-related genes in tadpoles of wild Wood Frogs ( Lithobates sylvaticus (LeConte, 1825); also known as Rana sylvatica (Cope, 1889)) during metamorphosis. Results showed that, in concordance with laboratory-reared studies, thyroid receptor beta (trb) gene expression profiles presented the most marked changes. At climax and compared with premetamorphic stages, brains, tails, and gonad–mesonephros complex (GMC) tissues increased trb expression levels 5-, 21-, and 41-fold, respectively (p < 0.05). In addition, gene expression levels of brain deiodinase type II and III showed opposite trends, where 3-fold decrease and 10-fold increase were, respectively, found. This finding supports the idea that thyroid hormone, as it has been demonstrated in laboratory-reared tadpoles, is also involved in natural metamorphosis in wild tadpoles. Interestingly, and contrary to our predictions, we observed that whole brain corticotropin-releasing factor (crf) and crf receptor 1 (crfr1) gene expression levels significantly decrease through metamorphosis in wild L. sylvaticus tadpoles. Further analyses are required to determine if a role of TH in the timing of anuran gonadal development exists, as well as the importance of cell-specific and tissue-specific expression of crf and crfr1 to metamorphosis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 420-420
Author(s):  
Christian Flotho ◽  
Susana C. Raimondi ◽  
James R. Downing

Abstract We have demonstrated that expression profiling of leukemic blasts can accurately identify the known prognostic subtypes of ALL, including T-ALL, E2A-PBX1, TEL-AML1, MLL rearrangements, BCR-ABL, and hyperdiploid &gt;50 chromosomes (HD&gt;50). Interestingly, almost 70% of the genes that defined HD&gt;50 ALL localized to chromosome 21 or X. To further explore the relationship between gene expression and chromosome dosage, we compared the expression profiles obtained using the Affymetrix U133A&B microarrays of 17 HD&gt;50 ALLs to 78 diploid or pseudodiploid ALLs. Our analysis demonstrated that the average expression level for all genes on a chromosome could be used to predict chromosome copy numbers. Specifically, the copy number for each chromosome calculated by gene expression profiling predicted the numerical chromosomal abnormalities detected by standard cytogenetics. For chromosomes that were trisomic in HD&gt;50 ALL, the mean chromosome-specific gene expression level was increased approximately 1.5-fold compared to that observed in diploid or pseudodiploid ALL cases. Similarly, for chromosome 21 and X, the mean chromosome-specific gene expression levels were increased approximately 2-fold, consistent with a duplication of the active X chromosome and tetrasomy of chromosome 21, a finding verified by standard cytogenetics in &gt;90% of the HD&gt;50 cases. These finding indicate that the aberrant gene expression levels seen in HD&gt;50 ALL primarily reflect gene dosages. Importantly, we did not observe any clustering of aberrantly expressed genes across the duplicated chromosomes, making regional gain or loss of genomic material unlikely. Paradoxically, however, a more detailed analysis revealed a small but statistically significant number of genes on the trisomic/tetrasomic chromosomes whose expression levels were markedly reduced when compared to that seen in diploid or pseudodiploid leukemic samples. Using the Statistical Analysis of Microarrays (SAM) algorithm we identified 20 genes whose expression was reduced &gt;2-fold despite having an increase in copy number. Interestingly, included within this group are several known tumor suppressors, including AKAP12, which is specifically silenced by methylation in fos-transformed cells, and IGF2R and IGFBP7, negative regulators of insulin-like growth factor signaling. In addition to the silencing of a small subset of genes, we also identified 21 genes on these chromosomes whose expression levels were markedly higher (&gt;3-fold) than would be predicted solely based on copy number. Although the mechanism responsible for their increased expression remains unknown, included in this group are four genes involved in signal transduction (IL3RA, IL13RA1, SNX9, and GASP) and a novel cytokine, C17, whose expression is normally limited to CD34+ hematopoietic progenitors. Taken together, these data suggest that aberrant growth in HD&gt;50 ALL is in part driven by increased expression of a large number of genes secondary to chromosome duplications, coupled with a further enhanced expression of a limited number of growth promoting genes, and the specific silencing of a small subset of negative growth regulatory genes. Understanding the mechanisms responsible for the non-dosage related changes in gene expression should provide important insights into the pathology of HD&gt;50 ALL.


Biochemistry ◽  
2003 ◽  
Vol 42 (7) ◽  
pp. 2116-2121 ◽  
Author(s):  
Telma T. Schwindt ◽  
Fábio L. Forti ◽  
Maria Ap. Juliano ◽  
Luiz Juliano ◽  
Hugo A. Armelin

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4292-4292
Author(s):  
Youshan Zhao ◽  
Feng Xu ◽  
Juan Guo ◽  
Sida Zhao ◽  
Chunkang Chang ◽  
...  

Abstract Background and Object In addition to histone deacetylation, the importance of histone over-acetylation induced oncogene transcription in initiation and progression of myelodysplastic syndrome (MDS) has been proposed recently. Our previous whole-exome sequencing identified a new somatic mutation, ANKRD11, an important factor in histone acetylation regulation. Its roles in MDS pathophysiology need to be clarified. Methods The next generation target sequencing (Including ANKRD11) was carried out in 320 patients with MDS using the MiSeq Benchtop Sequencer. ANKRD11 mRNA expression in bone marrow of MDS was measured by real-time PCR. Loss and gain of function assay were carried out in myeloid cell lines K562, MEG-01£¬or SKM-1 to observe the influence on cell proliferation and differentiation . The levels of histone acetylation at H3 and H4 were detected by Western blot. Results Target sequencing in a cohort of 320 MDS patients identified 14 of ANKRD11 mutations (4.38%, Fig.1), which were confirmed by Sanger sequencing. Meanwhile, no ANKRD11 mutations in 100 normal controls were defined. ANKRD11 mutations occurred frequently in exons 10 and 9. The mRNA expression levels of ANKRD11 were significantly decreased in MDS patients, especially in ANKRD11mutant patients (Fig.2). ANKRD11 knockdown in K562 and MEG-1 resulted in growth inhibition, cell cycle arrest and erythroid/megakaryocytic differentiation retardant. In MDS cell line SKM-1, the arrested differentiation was rescued by over-expression of ANKRD11. Consistent with a role for ANKRD11 in histone acetylation, ANKRD11 KD increased acetylation of histones H3 and H4 at H3K14 and H4K5 and resulted in the upregulation of genes involved in differentiation inhibilation (SOX6, P21, et al). Finally, the ANKRD11 KD-mediated influence on cell proliferation and differentiation were reversed by inhibiting histone acetyltransferase activity. Conclusion Our assay defined that ANKRD11 was a crucial chromatin regulator that suppress histone acetylation and then decrease gene expression during myeloid differentiation, providing a likely explanation for its role in MDS pathogenesis. This study further support histone acetylase inhibitor as a potential treatment in MDS. Figure ANKRD11mutation distribution (a) and coexist with other mutations (b). Figure. ANKRD11mutation distribution (a) and coexist with other mutations (b). Figure The mRNA expression levels of ANKRD11in our MDS (A, C) subset and GEO data (B). Figure. The mRNA expression levels of ANKRD11in our MDS (A, C) subset and GEO data (B). Changes of histone acetylation in ANKRD11-KD cell line (MEG-01). ANKRD11 KD significantly increased acetylation of histones H3 and H4 at H3K14 and H4K5. Changes of histone acetylation in ANKRD11-KD cell line (MEG-01). ANKRD11 KD significantly increased acetylation of histones H3 and H4 at H3K14 and H4K5. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sabrina Borchert ◽  
Pia-Maria Suckrau ◽  
Robert F. H. Walter ◽  
Michael Wessolly ◽  
Elena Mairinger ◽  
...  

Abstract Malignant pleural mesothelioma (MPM) is a rare, but aggressive tumor with dismal prognosis. Platinum-based chemotherapy is regularly used as part of multimodality therapy. The expression of metallothioneins (MT) has been identified as a reason for cisplatin resistance, which often leads to early therapy failure or relapse. Thus, knockdown of MT expression may improve response to cisplatin treatment. The MT gene- and protein expression of the MPM-cell lines MSTO-211H, NCI-H2052 and NCI-H2452 and the human fibroblast cell line MRC-5, as well as their sensitivity to cisplatin treatment have been evaluated. Knockdown of MT1A, 1B and 2A expression was induced by RNA interference. MT expression was measured using quantitative real-time PCR. An in vitro Assay based on enzyme activity was used to detect cell viability, necrosis and apoptosis before and after incubation with cisplatin. MT2A gene expression could be detected in all MPM cell lines, showing the highest expression in NCI-H2452 and NCI-H2052, whereas gene expression levels of MT1A and MT1B were low or absent. The immunohistochemically protein expression of MT-I/II reflect MT2A gene expression levels. Especially for MSTO-211H cell presenting low initial MT2A levels, a strong induction of MT2A expression could be observed during cisplatin treatment, indicating a cell line-specific and platin-dependent adaption mechanism. Additionally, a MT2A-dependent cellular evasion of apoptosis during cisplatin could be observed, leading to three different MT based phenotypes. MSTO-211H cells showed lower apoptosis rates at an increased expression level of MT2A after cisplatin treatment (from sixfold to fourfold). NCI-H2052 cells showed no changes in MT2A expression, while apoptosis rate is the highest (8–12-fold). NCI-H2452 cells showed neither changes in alteration rate of MT2A expression nor changes in apoptosis rates, indicating an MT2A-independent resistance mechanism. Knockdown of MT2A expression levels resulted in significantly induced apoptotic rates during cisplatin treatment with strongest induction of apoptosis in each of the MPM cell lines, but in different markedness. A therapeutic meaningful effect of MT2A knockdown and subsequent cisplatin treatment could be observed in MSTO-211H cells. The present study showed MT2A to be part of the underlying mechanism of cisplatin resistance in MPM. Especially in MSTO-211H cells we could demonstrate major effects by knockdown of MT2A expression, verifying our hypothesis of an MT driven resistance mechanism. We could prove the inhibition of MT2A as a powerful tool to boost response rates to cisplatin-based therapy in vitro. These data carry the potential to enhance the clinical outcome and management of MPM in the future.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 254-254
Author(s):  
Michele Milella ◽  
Maria Rosaria Ricciardi ◽  
Chiara Gregorj ◽  
Fabiana De Cave ◽  
Steven L. Abrams ◽  
...  

Abstract The Raf/MEK/ERK signaling module plays a pivotal role in the regulation of cell proliferation, survival, and differentiation. Our group, among others, has recently demonstrated that this pathway is frequently dysregulated in hematological malignancies and may constitute an attractive therapeutic target, particularly in AML. Here we investigated the effects of PD0325901, a novel MEK inhibitor, on phospho-protein expression, gene expression profiles, cell proliferation, and apoptosis in cell line models of AML, ALL, multiple myeloma (MM), ex vivo-cultured primary AML blasts, and oncogene-transformed hematopoietic cells. AML cell lines (OCI-AML2, OCI-AML3, HL-60) were strikingly sensitive to PD0325901 (IC50: 5–19 nM), NB4 (APL) and U266 (MM) showed intermediate sensitivity (IC50: 822 and 724 nM), while all the lymphoid cell lines tested and the myeloid cell lines U937 and KG1 were resistant (IC50 > 1000 nM). Cell growth inhibition was due to inhibition of cell cycle progression and induction of apoptosis. A statistically significant reduction in the proportion of S-phase cells (p=0.01) and increase in the percentage of apoptotic cells (p=0.019) was also observed in 18 primary AML samples in response to 100 nM PD0325901. Analysis of the correlation between sensitivity/resistance to PD0325901 and Ras/Raf mutation status is currently ongoing. PD0325901 effects were also examined in a panel of IL-3-dependent murine myeloid FDC-P1 cell lines transformed to grow in response to 11 different oncogenes in the absence of IL-3. Fms-, Ras-, Raf-1-, B-Raf-, MEK1-, IGF-1R-, and STAT5a-transformed FDC-P1 cells were very sensitive to PD0325901 (IC50: ~ 1 nM), while A-Raf-, BCR-ABL-, EGFR- or Src-transformed cells were 10 to 100 fold less sensitive (IC50: 10 to 100 nM); the parental, IL-3 dependent FDC-P1 cell line had an IC50 > 1000 nM. Analysis of the phosphorylation levels of 18 different target proteins after treatment with 10 nM PD0325901 showed a 5- to 8-fold reduction in ERK-1/2, observed only in sensitive cell lines, and a 2-fold reduction in JNK and STAT3 phosphorylation. PD0325901 (10 nM) treatment also profoundly altered the gene expression profile of the sensitive cell line OCI-AML3: 96 genes were modulated after 24 h (37 up- and 59 down-regulated), most of which involved in cell cycle regulation. Changes in cyclin D1 and D3, cyclin E, and cdc 25A were also validated at the protein level. Overall, PD0325901 shows potent growth-inhibitory and pro-apoptotic activity, indicating that MEK may be an appropriate therapeutic target in an array of different hematological malignancies. Further preclinical/clinical development of this compound is warranted, particularly in myeloid leukemias.


2021 ◽  
Vol 22 (11) ◽  
pp. 5792
Author(s):  
Laura Francesca Pisani ◽  
Gian Eugenio Tontini ◽  
Carmine Gentile ◽  
Beatrice Marinoni ◽  
Isabella Teani ◽  
...  

Interleukin (IL)-33 is a member of the interleukin (IL)-1 family of cytokines linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has a direct effect on human gastric epithelial cells (GES-1), the human gastric adenocarcinoma cell line (AGS), and the gastric carcinoma cell line (NCI-N87) by assessing its role in the regulation of cell proliferation, migration, cell cycle, and apoptosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assays, migration by wound healing assay, and apoptosis by caspase 3/7 activity assay and annexin V assay. Cell cycle was analyzed by means of propidium iodine assay, and gene expression regulation was assessed by RT-PCR profiling. We found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell lines, and it can stimulate proliferation and reduce apoptosis in normal epithelial cell lines. These effects were also confirmed by the analysis of cell cycle gene expression, which showed a reduced expression of pro-proliferative genes in cancer cells, particularly in genes involved in G0/G1 and G2/M checkpoints. These results were confirmed by gene expression analysis on bioptic and surgical specimens. The aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell-type-dependent manner.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Chen Jie ◽  
Wang Xuan ◽  
Han-Dong Feng ◽  
Ding-Mao Hua ◽  
Wang Bo ◽  
...  

Abstract Background AdipoR2, which belongs to the seven-transmembrane-domain receptor family, has been shown to play an important role in the development of human tumours, but the underlying mechanisms are poorly understood. In this study, we found that AdipoR2 expression correlates with glioma grade. In addition, we also investigated the mechanisms behind the antiproliferative effects of AdipoR2 in U251 cells (a human glioma cell line) using colony formation and WST-8 growth assays. Methods The U251 cell line was cultured in vitro. Western blotting was used to detect the expression of relevant proteins. Quantitative RT-PCR was used to detect AdipoR1 and AdipoR2 expression. Flow cytometry was used to detect cell cycle assay results. The gene expression profiles of glioma samples from the CGGA database were analysed by MATLAB and GSEA software. Results The AMPK/mTOR pathway plays a central role in the regulation of cell proliferation, differentiation and migration and may promote tumorigenesis. Therefore, we can control cancer progression by modulating the AMPK/mTOR pathway. However, there is no information on the relationship between AdipoR and AMPK/mTOR in central nervous system tumours such as GBM. In this study. We found 648 upregulated genes and 436 downregulated genes correlated with AdipoR2 expression in 158 glioma samples. GSEA suggested that AdipoR2 is a cell cycle-associated gene. The results of the flow cytometry analysis indicated that AdipoR2 induced G0/G1 cell cycle arrest in U251 cells. Furthermore, we identified the AMPK/mTOR signalling axis to be involved in AdipoR2-induced cell cycle arrest. Conclusions Our results suggest that AdipoR2 may represent a novel endogenous negative regulator of GBM cell proliferation. These findings also suggest that AdipoR2 may be a promising therapeutic target in GBM patients.


Author(s):  
Laura Francesca Pisani ◽  
Gianeugenio Tontini ◽  
Carmine Gentile ◽  
Beatrice Marinoni ◽  
Isabella Teani ◽  
...  

Background: Interleukin (IL)-33 is a member of interleukin (IL)-1 family of cytokines which has been linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has direct effect on human gastric epithelial cells (GES-1) and on human gastric adenocarcinoma cell line (AGS), assessing its role in regulation of cell proliferation and cell cycle, apoptosis and necrosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Methods: cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assay, we also evaluated apoptosis and necrosis by Caspase 3/8 Activity assay and Propidium Iodine/Annexin V assays. Cell cycle were analyzed by means of Propidium Iodine assay and gene expression regulation was assessed by RT-PCR Profiling. Results: we found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell line, while it can stimulate proliferation and reduce apoptosis in normal epithelial cell line. These effects are also confirmed by the analysis of cell cycle gene expression which showed a reduced expression of proproliferative genes in AGS cells, in particular genes involved in G0/G1 and G2/M checkpoint. These results are confirmed by the gene expression analysis on surgical and bioptic specimens. Conclusions: the aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell type-dependent fashion.


Sign in / Sign up

Export Citation Format

Share Document