scholarly journals Identification of Differentially Expressed Genes in Mice with Nutritional or Genetic Causes of Iron Overload

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2681-2681
Author(s):  
Aaron Cheng ◽  
Luke Schissler ◽  
Bonnie Patchen ◽  
Vera Gaun ◽  
Manoj Bhasin ◽  
...  

Abstract Iron overload causes the generation of reactive oxygen species, which can lead to lasting organ damage, particularly to the liver. In patients with hereditary hemochromatosis, transfusion-dependent anemias, and hemoglobinopathies, iron overload is a major cause of mortality. A deeper understanding of iron regulation and the biological pathways involved in maintaining homeostasis may reveal new therapeutic targets for patients with iron overload disorders. We designed this study to discover genes that are differentially expressed in nutritional and genetic models of iron overload. For the nutritional iron overload study, 5-week old male C57BL/6 mice were placed on a soy-free diet (AIN-93G) containing different amounts of iron per kilogram of food: iron-deficient (2.5 mg/kg, n=3), iron-sufficient (37.5 mg/kg, n=3), and iron-excess (750 mg/kg, n=3). In the second study, 5-week old male C57BL/6 mice that were either wild type or HJV knockout mice that exhibited severe early onset iron overload secondary to homozygous deficiency of the bone morphogenic protein coreceptor, hemojuvelin (HJV), were maintained on the iron-deficient (2.5 mg/kg iron) diet (n=2 per group). For both studies animals were sacrificed after 50 days and liver RNA was extracted and sequenced at 40-50 million reads per sample. The RNA integrity number (RIN) for each sample was >6 and assessments of read duplication, base call frequency, and read quality indicated excellent quality of the data. For the HJV knockout mice, we used a false discovery rate <0.05 and a mean-fold change >2, to reveal genes that were differentially expressed compared to wild type mice. For the dietary iron study, genes were grouped by self-organizing maps to identify transcripts whose level of expression trended with increased or decreased dietary iron intake. The resulting analysis identified 148 genes in nutritionally iron-overloaded mice and 688 genes in HJV knockout mice that exhibited significant changes in expression. Of these, 28 genes were differentially regulated in both nutritionally iron overloaded and HJV knockout mice, including expected genes, such as transferrin receptor, HAMP (hepcidin), and bone morphogenic protein 6, and unexpected genes such as cytochrome P450 17a1 (cyp17a1), an enzyme that catalyzes critical steps in steroid synthesis, and nicotinomide N-methyltransferase (nnmt), an enzyme that regulates drug metabolism and DNA methylation. We clustered the 688 differentially expressed genes from the HJV knockout mice into functional pathways using the Functional Analysis tool from DAVID Bioinformatics Resources 6.7 (NIAID). Clusters were considered significant if there were >2 genes in the pathway and the Benjamini-Hochberg P-value was <0.05. We found that the expression of genes involved with PPAR signaling (P=0.0086) was decreased, while expression of transcripts involved with Huntington’s disease (P=0.038) was increased in HJV knockout mice compared to wild-type mice. Our RNA sequencing analysis identified a variety of novel pathways that were differentially regulated in dietary and genetic models of iron overload. Further studies are underway to characterize the potential roles of these genes in iron homeostasis. Disclosures No relevant conflicts of interest to declare.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hangxia Jin ◽  
Xiaomin Yu ◽  
Qinghua Yang ◽  
Xujun Fu ◽  
Fengjie Yuan

AbstractPhytic acid (PA) is a major antinutrient that cannot be digested by monogastric animals, but it can decrease the bioavailability of micronutrients (e.g., Zn and Fe). Lowering the PA content of crop seeds will lead to enhanced nutritional traits. Low-PA mutant crop lines carrying more than one mutated gene (lpa) have lower PA contents than mutants with a single lpa mutant gene. However, little is known about the link between PA pathway intermediates and downstream regulatory activities following the mutation of these genes in soybean. Consequently, we performed a comparative transcriptome analysis using an advanced generation recombinant inbred line with low PA levels [2mlpa (mips1/ipk1)] and a sibling line with homozygous non-mutant alleles and normal PA contents [2MWT (MIPS1/IPK1)]. An RNA sequencing analysis of five seed developmental stages revealed 7945 differentially expressed genes (DEGs) between the 2mlpa and 2MWT seeds. Moreover, 3316 DEGs were associated with 128 metabolic and signal transduction pathways and 4980 DEGs were annotated with 345 Gene Ontology terms related to biological processes. Genes associated with PA metabolism, photosynthesis, starch and sucrose metabolism, and defense mechanisms were among the DEGs in 2mlpa. Of these genes, 36 contributed to PA metabolism, including 22 genes possibly mediating the low-PA phenotype of 2mlpa. The expression of most of the genes associated with photosynthesis (81 of 117) was down-regulated in 2mlpa at the late seed developmental stage. In contrast, the expression of three genes involved in sucrose metabolism was up-regulated at the late seed developmental stage, which might explain the high sucrose content of 2mlpa soybeans. Furthermore, 604 genes related to defense mechanisms were differentially expressed between 2mlpa and 2MWT. In this study, we detected a low PA content as well as changes to multiple metabolites in the 2mlpa mutant. These results may help elucidate the regulation of metabolic events in 2mlpa. Many genes involved in PA metabolism may contribute to the substantial decrease in the PA content and the moderate accumulation of InsP3–InsP5 in the 2mlpa mutant. The other regulated genes related to photosynthesis, starch and sucrose metabolism, and defense mechanisms may provide additional insights into the nutritional and agronomic performance of 2mlpa seeds.


2021 ◽  
Author(s):  
Richard J White ◽  
Eirinn Mackay ◽  
Stephen W Wilson ◽  
Elisabeth M Busch-Nentwich

In model organisms, RNA sequencing is frequently used to assess the effect of genetic mutations on cellular and developmental processes. Typically, animals heterozygous for a mutation are crossed to produce offspring with different genotypes. Resultant embryos are grouped by genotype to compare homozygous mutant embryos to heterozygous and wild-type siblings. Genes that are differentially expressed between the groups are assumed to reveal insights into the pathways affected by the mutation. Here we show that in zebrafish, differentially expressed genes are often overrepresented on the same chromosome as the mutation due to different levels of expression of alleles from different genetic backgrounds. Using an incross of haplotype-resolved wild-type fish, we found evidence of widespread allele-specific expression, which appears as differential expression when comparing embryos homozygous for a region of the genome to their siblings. When analysing mutant transcriptomes, this means that differentially expressed genes on the same chromosome as a mutation of interest may not be caused by that mutation. Typically, the genomic location of a differentially expressed gene is not considered when interpreting its importance with respect to the phenotype. This could lead to pathways being erroneously implicated or overlooked due to the noise of spurious differentially expressed genes on the same chromosome as the mutation. These observations have implications for the interpretation of RNA-seq experiments involving outbred animals and non-inbred model organisms.


2015 ◽  
Vol 4 (4) ◽  
pp. 35-51 ◽  
Author(s):  
Bandana Barman ◽  
Anirban Mukhopadhyay

Identification of protein interaction network is very important to find the cell signaling pathway for a particular disease. The authors have found the differentially expressed genes between two sample groups of HIV-1. Samples are wild type HIV-1 Vpr and HIV-1 mutant Vpr. They did statistical t-test and found false discovery rate (FDR) to identify the genes increased in expression (up-regulated) or decreased in expression (down-regulated). In the test, the authors have computed q-values of test to identify minimum FDR which occurs. As a result they found 172 differentially expressed genes between their sample wild type HIV-1 Vpr and HIV-1 mutant Vpr, R80A. They found 68 up-regulated genes and 104 down-regulated genes. From the 172 differentially expressed genes the authors found protein-protein interaction network with string-db and then clustered (subnetworks) the PPI networks with cytoscape3.0. Lastly, the authors studied significance of subnetworks with performing gene ontology and also studied the KEGG pathway of those subnetworks.


2020 ◽  
Vol 8 (2) ◽  
pp. 278 ◽  
Author(s):  
Weiyan Wang ◽  
Xiao Liu ◽  
Tao Han ◽  
Kunyuan Li ◽  
Yang Qu ◽  
...  

Metalaxyl is one of the main fungicides used to control pepper blight caused by Phytophthora capsici. Metalaxyl resistance of P. capsici, caused by the long-term intense use of this fungicide, has become one of the most serious challenges facing pest management. To reveal the potential resistance mechanism of P. capsici to fungicide metalaxyl, a metalaxyl-resistant mutant strain SD1-9 was obtained under laboratory conditions. The pathogenicity test showed that mutant strain SD1-9 had different pathogenicity to different host plants with or without the treatment of metalaxyl compared with that of the wild type SD1. Comparative transcriptome sequencing of mutant strain SD1-9 and wild type SD1 led to the identification of 3845 differentially expressed genes, among them, 517 genes were upregulated, while 3328 genes were down-regulated in SD1-9 compared to that in the SD1. The expression levels of 10 genes were further verified by real-time RT-PCR. KEGG analysis showed that the differentially expressed genes were enriched in the peroxisome, endocytosis, alanine and tyrosine metabolism. The expression of the candidate gene XLOC_020226 during 10 life history stages was further studied, the results showed that expression level reached a maximum at the zoospores stage and basically showed a gradually increasing trend with increasing infection time in pepper leaves in SD1-9 strain, while its expression gradually increased in the SD1 strain throughout the 10 stages, indicated that XLOC_020226 may be related to the growth and pathogenicity of P. capsici. In summary, transcriptome analysis of plant pathogen P. capsici strains with different metalaxyl resistance not only provided database of the genes involved in the metalaxyl resistance of P. capsici, but also allowed us to gain novel insights into the potential resistance mechanism of P. capsici to metalaxyl in peppers.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 334 ◽  
Author(s):  
Magdalena Ewa Pawełkowicz ◽  
Agnieszka Skarzyńska ◽  
Małgorzata Sroka ◽  
Maria Szwacka ◽  
Tomasz Pniewski ◽  
...  

Transgenic plants are commonly used in breeding programs because of the various features that can be introduced. However, unintended effects caused by genetic transformation are still a topic of concern. This makes research on the nutritional safety of transgenic crop plants extremely interesting. Cucumber (Cucumis sativus L.) is a crop that is grown worldwide. The aim of this study was to identify and characterize differentially expressed genes and regulatory miRNAs in transgenic cucumber fruits that contain the thaumatin II gene, which encodes the sweet-tasting protein thaumatin II, by NGS sequencing. We compared the fruit transcriptomes and miRNomes of three transgenic cucumber lines with wild-type cucumber. In total, we found 47 differentially expressed genes between control and all three transgenic lines. We performed the bioinformatic functional analysis and gene ontology classification. We also identified 12 differentially regulated miRNAs, from which three can influence the two targets (assigned as DEGs) in one of the studied transgenic lines (line 224). We found that the transformation of cucumber with thaumatin II and expression of the transgene had minimal impact on gene expression and epigenetic regulation by miRNA, in the cucumber fruits.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1904 ◽  
Author(s):  
Archana Khadgi ◽  
Courtney A. Weber

Red raspberry (Rubus idaeus L.) is a globally commercialized specialty crop with growing demand worldwide. The presence of prickles on the stems, petioles and undersides of the leaves complicates both the field management and harvesting of raspberries. An RNA sequencing analysis was used to identify differentially expressed genes in the epidermal tissue of prickled “Caroline” and prickle-free “Joan J.” and their segregating progeny. Expression patterns of differentially expressed genes (DEGs) in prickle-free plants revealed the downregulation of some vital development-related transcription factors (TFs), including a MIXTA-like R2R3-MYB family member; MADS-box; APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) and NAM, ATAF1/2 and CUC2 (NAC) in prickle-free epidermis tissue. The downregulation of these TFs was confirmed by qRT-PCR analysis, indicating a key regulatory role in prickle development. This study adds to the understanding of prickle development mechanisms in red raspberries needed for utilizing genetic engineering strategies for developing prickle-free raspberry cultivars and, possibly, other Rubus species, such as blackberry (Rubus sp.) and black raspberry (R. occidentalis L.).


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4582-4582
Author(s):  
Wei Liao ◽  
Gwen Jordaan ◽  
Artur Jaroszewicz ◽  
Matteo Pellegrini ◽  
Sanjai Sharma

Abstract Abstract 4582 High throughput sequencing of cellular mRNA provides a comprehensive analysis of the transcriptome. Besides identifying differentially expressed genes in different cell types, it also provides information of mRNA isoforms and splicing alterations. We have analyzed two CLL specimens and a normal peripheral blood B cells mRNA by this approach and performed data analysis to identify differentially expressed and spliced genes. The result showed CLLs specimens express approximately 40% more transcripts compared to normal B cells. The FPKM data (fragment per kilobase of exon per million) revealed a higher transcript expression on chromosome 12 in CLL#1 indicating the presence of trisomy 12, which was confirmed by fluorescent in-situ hybridization assay. With a two-fold change in FPKM as a cutoff and a p value cutoff of 0.05 as compared to the normal B cell control, 415 genes and 174 genes in CLL#1 and 676 and 235 genes in CLL#2 were up and downregulated or differentially expressed. In these two CLL specimens, 45% to 75% of differentially expressed genes are common to both the CLL specimens indicating that genetically disparate CLL specimens have a high percentage of a core set of genes that are potentially important for CLL biology. Selected differentially expressed genes with increased expression (selectin P ligand, SELPLG, and adhesion molecule interacts with CXADR antigen 1, AMICA) and decreased (Fos, Jun, CD69 and Rhob) expression based on the FPKM from RNA-sequencing data were also analyzed in additional CLL specimens by real time PCR analysis. The expression data from RNA-seq closely matches the fold-change in expression as measured by RT-PCR analysis and confirms the validity of the RNA-seq analysis. Interestingly, Fos was identified as one of the most downregulated gene in CLL. Using the Cufflinks and Cuffdiff software, the splicing patterns of genes in CLL specimens and normal B cells were analyzed. Approximately, 1100 to 1250 genes in the two CLL specimens were significantly differentially spliced as compared to normal B cells. In this analysis as well, there is a core set of 800 common genes which are differentially spliced in the two CLL specimens. The RNA-sequencing analysis accurately identifies differentially expressed novel genes and splicing variations that will help us understand the biology of CLL. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document