Duvelisib (IPI-145) Inhibits Malignant B-Cell Proliferation and Disrupts Signaling from the Tumor Microenvironment through Mechanisms That Are Dependent on PI3K-δ and PI3K-γ

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 328-328 ◽  
Author(s):  
Marisa Peluso ◽  
Kerrie Faia ◽  
David Winkler ◽  
Nidhi Patel ◽  
Erin Brophy ◽  
...  

Abstract Background: The neoplastic B cells of indolent non-Hodgkin lymphoma (iNHL) and chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) rely upon the support of non-neoplastic cells within their microenvironment for proliferation and survival. Support cells include T cells, myeloid-derived cells, and mesenchymal stromal cells, which provide phosphoinositide-3 kinase (PI3K)-dependent survival and growth signals for the neoplastic cells, as well as signals that maintain the tumor microenvironment (TME). Duvelisib (IPI-145) is an oral inhibitor of PI3K-δ,γ in clinical development for iNHL and CLL/SLL. To better understand the roles of the PI3K-δ and PI3K-γ isoforms in mediating signaling between the tumor and TME cells in B-cell malignancies, Infinity’s highly potent (low nM) PI3K isoform-selective compounds that target either PI3K-δ or PI3K-γ with >100-fold selectivity over the other PI3K isoforms were utilized in in vitro experiments. Methods/Results: A mixture of cytokines (CD40L/IL-2/IL-10) was utilized in an assay that recapitulated TME-induced malignant B-cell proliferative responses. Duvelisib inhibited CD40L/IL-2/IL-10-induced proliferation of primary CLL cells with an average IC50 in the sub-nanomolar range. The use of PI3K isoform-selective inhibitory compounds revealed these proliferative signals are PI3K-δ dependent, as the PI3K-δ-selective inhibitor was more active than the PI3K-γ-selective inhibitor. While these experiments established the direct PI3K-δ dependence of TME-derived cytokines on CLL cell proliferation, the role of PI3K-γ in key functions such as the directed migration of normal immune cells of the TME was also tested. We hypothesized that chemokines that recruit immune cells to the TME would signal through G-protein coupled receptors linked to PI3K-γ. The stromally-derived chemokine CXCL12 resulted in upregulation of phospho (p)-AKT in both the CD3+ T-cell and CLL-cell populations in CLL patient total peripheral blood mononuclear cells (PBMCs). Using isoform-selective inhibitors, the increase in CXCL12-induced pAKT in CD3+ T cells was found to be mediated by PI3K-γ. Interestingly, within the malignant B-cell population, the increase in CXCL12-induced pAKT was PI3K-δ dependent, suggesting that CXCL12 signals through different PI3K isoforms in these varying cell types. Chemotactic assays demonstrated reduced migration of total CLL PBMCs towards CXCL12 in the presence of combined PI3K-δ and PI3K-γ inhibition by duvelisib. Flow cytometric analyses of the migrating populations revealed that the greatest effect of duvelisib on CXCL12-induced migration occurred primarily within the T-cell population. Utilizing PI3K isoform-selective compounds, the inhibition of T-cell migration toward CXCL12 was found to be a PI3K-γ mediated process, as the PI3K-γ-selective inhibitor was more potent than the PI3K-δ-selective inhibitor in blocking T-cell migration. Myeloid-derived cells and mesenchymal stromal cells can also support CLL cell survival as components of the TME. Recent reports suggest that CLL cytoprotective nurse-like cells may have an M2 polarization and be similar to the immunosuppressive myeloid-derived suppressor cells found in some solid tumors [Gianonni et al. Haematologica 2014, 99(6)]. To model these TME components, mouse bone marrow cells were differentiated into macrophages with murine MCSF and IL-4 (M2–polarized). CXCL12-induced pAKT in these M2 cells, which express CXCR4, was more potently inhibited by duvelisib and the PI3K-γ-selective inhibitor than the PI3K-δ-selective inhibitor. Finally, co-cultures of M2 macrophages with CLL cells led to extended CLL cell survival. These data show that CXCL12 mediated-M2 activation is dependent upon PI3K-γ and that M2-cells can act to support CLL cell survival. Conclusions: T cells and myeloid cells provide a survival and proliferative advantage to malignant CLL cells within the TME. The role of PI3K-γ in the migration and activation of these cells supports the potential for therapeutic benefit from inhibition of PI3K-γ. By inhibiting both the PI3K-δ and PI3K-γ isoforms, duvelisib is uniquely positioned to inhibit key signals important in the pathogenesis of B-cell malignancies. Disclosures Peluso: Infinity Pharmaceuticals, Inc.: Employment. Faia:Infinity Pharmaceuticals, Inc.: Employment. Winkler:Infinity Pharmaceuticals, Inc.: Employment. Patel:Infinity Pharmaceuticals, Inc.: Employment. Brophy:Infinity Pharmaceuticals, Inc.: Employment. White:Infinity Pharmaceuticals, Inc.: Employment. Douglas:Infinity Pharmaceuticals, Inc.: Employment. Stern:Infinity Pharmaceuticals, Inc.: Employment. Palombella:Infinity Pharmaceuticals, Inc.: Employment. McGovern:Infinity Pharmaceuticals, Inc.: Employment. Kutok:Infinity Pharmaceuticals, Inc.: Employment.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1753-1753 ◽  
Author(s):  
Shih-Shih Chen ◽  
Steven Ham ◽  
Kanti R. Rai ◽  
Karen McGovern ◽  
Jeffery L. Kutok ◽  
...  

Abstract Duvelisib (IPI-145), a dual inhibitor of phosphoinositide 3-kinase (PI3K)-δ and -γ, has shown clinical activity in treatment-naïve and relapsed/refractory chronic lymphocytic leukemia (CLL) patients. Clinically, duvelisib results in a redistribution of malignant B cells and concomitant reduction in nodal enlargement. These effects are believed to be due to important roles of PI3K- δ and -γ in CXCL12-mediated CLL cell migration (Peluso 2014), cytokine-induced CLL B-cell proliferation, and BCR-stimulated B-cell survival (Balakrishnan 2015). Additional data suggest an effect of duvelisib on the tumor supporting cells of the CLL microenvironment. This includes preclinical studies demonstrating that PI3K-γ inhibition blocks normal T cell migration toward tumor chemokines and prevents murine bone marrow-derived M2 macrophage polarization (Peluso 2014), as well as clinical data in CLL patients receiving duvelisib showing reduced serum levels of myeloid and T cell-secreted cytokines and chemokines (Douglas 2015). To further characterize duvelisib's effect on CLL cells and the tumor microenvironment (TME), a murine xenograft model using primary human CLL cells was employed. We first studied duvelisib's effect on CLL B- and T-cell migration in vivo. CLL PBMCs (n=2; 1 IGHV unmutated (U)-CLL, 1 IGHV mutated (M)-CLL) pre-treated with duvelisib for 48 hours were injected retro-orbitally into NOD-scid IL2Rgammanull (NSG) mice. B- and T-cell localization in tissues and circulation was studied 1 and 24 hours post-injection. Duvelisib treatment (1000 nM) prevented the egress of CLL B and T cells from the circulation into the spleen, indicating impaired homing of CLL B and T cells. To better define the effect of duvelisib on T-cell migration, T cells from CLL patients (n=3; 2 U-CLL, 1 M-CLL) treated ex vivo with duvelisib at 1, 10, 100 and 1000 nM were injected into mice and analyzed for their trafficking 24 hours later. Inhibition of T-cell homing to spleen was dose dependent, with only 100 and 1000 nM having significant effects. Given duvelisib's cellular IC50s for PI3K isoforms, these results suggest that impaired T-cell migration is due to PI3K-γ inhibition, and studies with isoform-selective PI3K-δ and PI3K-γ inhibitors are currently underway to examine this possibility. The effect of duvelisib on CLL T-cell proliferation was evaluated after in vitro activation with anti-CD3/28 Dynabeads plus IL2 (n=6; 3 U-CLL, 3M-CLL). In duvelisib treated cells, CD4+, but not CD8+, T-cell proliferation was inhibited at doses of 100 and 1000 nM, suggesting a role for PI3K-γ. The effects of duvelisib on CLL B- and T-cell growth in vivo (n=4; 2 U-CLL, 2 M-CLL) were then studied. Autologous CLL T cells were stimulated as above and injected with CLL PBMCs into NSG mice. Animals treated orally with duvelisib for 3 weeks at 100 mg/kg/day had preferentially reduced CD4+ T-cell recovery from spleens, thereby decreasing the CD4 to CD8 ratio. In each case, duvelisib treatment reduced the number of splenic CLL B cells. This reduction reflected inhibition of both CLL cell proliferation and survival, since duvelisib treatment decreased the percentage of cycling CLL cells and increased the percentage of apoptotic B cells. Thus, duvelisib may target CLL B-cell growth directly, or indirectly by inhibiting the support of CD4+ T cells in the TME. The potential effect of duvelisib on the tumor-supporting myeloid compartment was also tested. Because of limited human myeloid-cell engraftment in our NSG model, we studied the effect of duvelisib on murine macrophages. Mice receiving duvelisib had reduced numbers of splenic CD11b+ GR-1low LY-6Clow LY-6Gneg macrophages compared to controls, suggesting duvelisib altered macrophage development. Prior in vitro studies demonstrated inhibition of CLL B-cell survival and proliferation by duvelisib, as well as blockade of T-cell migration and M2 macrophage polarization (Balakrishnan 2015; Peluso 2014). Our current in vivo studies further support duvelisib's effect on CLL B-cell growth and survival through inhibition of cellular homing to supportive tissue niches and alterations in the TME. The latter, in part, is through suppression of T-cell support and alterations in the macrophage compartment. Overall, these preclinical results suggest that inhibition of PI3K-δ and PI3K-γ by duvelisib affects CLL cell survival through direct and indirect mechanisms. Disclosures McGovern: Infinity Pharmaceuticals, Inc.: Employment. Kutok:Infinity Pharmaceuticals, Inc.: Employment.


Blood ◽  
2020 ◽  
Author(s):  
Jordan Gauthier ◽  
Evandro D. Bezerra ◽  
Alexandre V. Hirayama ◽  
Salvatore Fiorenza ◽  
Alyssa Sheih ◽  
...  

CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T cell therapy has shown significant efficacy for relapsed or refractory (R/R) B-cell malignancies. Yet CD19 CAR T cells fail to induce durable responses in most patients. Second infusions of CD19 CAR T cells (CART2) have been considered as a possible approach to improve outcomes. We analyzed data from 44 patients with R/R B-cell malignancies (ALL, n=14; CLL, n=9; NHL, n=21) who received CART2 on a phase 1/2 trial at our institution. Despite a CART2 dose increase in 82% of patients, we observed a low incidence of severe toxicity after CART2 (grade ≥3 CRS, 9%; grade ≥3 neurotoxicity, 11%). After CART2, CR was achieved in 22% of CLL, 19% of NHL, and 21% of ALL patients. The median durations of response after CART2 in CLL, NHL, and ALL patients were 33, 6, and 4 months, respectively. Addition of fludarabine to cyclophosphamide-based lymphodepletion before CART1 and an increase in the CART2 dose compared to CART1 were independently associated with higher overall response rates and longer progression-free survival after CART2. We observed durable CAR T-cell persistence after CART2 in patients who received Cy-Flu lymphodepletion before CART1 and a higher CART2 compared to CART1 cell dose. The identification of two modifiable pre-treatment factors independently associated with better outcomes after CART2 suggests strategies to improve in vivo CAR T-cell kinetics and responses after repeat CAR T-cell infusions, and has implications for the design of trials of novel CAR T-cell products after failure of prior CAR T-cell immunotherapies.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Lei Zhang ◽  
Rui-Jie Dang ◽  
Yan-Mei Yang ◽  
Dian-Chao Cui ◽  
Ping Li ◽  
...  

As stromal cells and recently confirmed mesenchymal stem cells, OP9 cells support hematopoiesis stem cell (HSC) differentiation into the B lymphocyte lineage, yet Delta-like-1 (DL1) overexpressing OP9 (OP9DL1) cells promote the development of early T lymphocytes from HSC. However, the immunomodulatory capacity of OP9 or OP9DL1 on mature B and T cell proliferation has not been elucidated. Here, we show that OP9 and OP9DL1 have similar proliferation capacities and immunophenotypes except DL1 expression. Compared with OP9, OP9DL1 displayed more osteogenesis and less adipogenesis when cultured in the respective induction media. Both OP9 and OP9DL1 inhibited mature B and T cell proliferation. Furthermore, OP9 showed stronger inhibition on B cell proliferation and OP9DL1 exhibited stronger inhibition on T cell proliferation. With stimulation, both OP9 and OP9DL1 showed increased nitrate oxide (NO) production. The NO levels of OP9 were higher than that of OP9DL1 when stimulated with TNFα/IFNγor LPS/IL4. Taken together, our study reveals a previously unrecognized role of OP9 and OP9DL1 in mature B and T cell proliferation. DL1 overexpression alone changed the properties of OP9 cells in addition to their role in early B cell development.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2754-2754
Author(s):  
James Lee ◽  
Yan Nikhamin ◽  
Gavin Imperato ◽  
Adam Cohen ◽  
Michel Sadelain ◽  
...  

Abstract T cells may be genetically modified ex vivo to target specific antigens by retroviral transduction of genes encoding chimeric antigen receptors (CARs). We have previously constructed a CAR, termed 19z1, specific for the CD19 antigen expressed on most B cell malignancies. Human T cells modified to express the 19z1 CAR specifically eradicate systemic human CD19+ tumors in SCID-Beige mice. However, these models are limited by the xenogeneic nature of the human T cells and tumor cells and the immune compromised state of the host. Here, we studied the biology of adoptively transferred 19z1+ T cells in a syngeneic immune competent murine model designed to better mimic the clinical setting of patients with B cell malignancies. We utilized transgenic C57BL6 mice which lack expression of mouse CD19 (mCD19−/−) and have a single copy of the human CD19 (hCD19+/−) gene (C57BL6(mCD19−/− hCD19+/−)) kindly provided by Dr. T. Tedder, Duke University. These mice are functionally immune-competent with hCD19 expression restricted to the B cell population. To assess whether syngeneic 19z1+ T cells were capable of eradicating normal hCD19+ B cells, we infused C57BL6(mCD19−/− hCD19+/−) mice with either 19z1+ or control prostate specific membrane antigen-targeted (Pz1+) T cells. As assessed by flow cytometric analysis of peripheral blood, we neither found evidence of hCD19+ B cell aplasias in 19z1+ T cell treated mice nor were able to demonstrate the persistence of infused CAR+ T cells. To investigate whether the lack of 19z1+ T cell efficacy and persistence was due to an absence of homeostatic drive, we next lymphodepleted C57BL6(mCD19−/− hCD19+/−) mice with cyclophosphamide prior to T cell infusion. Mice lymphodepleted prior to 19z1+ T cell infusion demonstrated marked and sustained B cell aplasias when compared to lymphodepleted Pz1+ T cell and non-lymphodepleted T cell treated controls. Furthermore, while no CAR+ T cells were identifiable in the Pz1 and non-lymphodepleted control groups, 19z1+ T cells were consistently present in the peripheral blood of the cyclophosphamide pre-treated, 19z1+ T cell treated mice (3–5% of white blood cells). To assess the anti-tumor efficacy of the 19z1+ T cells, we next established a systemic tumor model utilizing mouse EL4 thymoma cells retrovirally modified to express hCD19 (EL4(hCD19)). C57BL6(mCD19−/− hCD19+/−) mice pre-treated with cyclophosphamide, subsequently infused systemically with EL4(hCD19) tumor, followed by systemic 19z1+ T cell infusion, had a significant survival advantage (80% survival at >120 days) over untreated controls or controls treated with Pz1+ T cells or 19z1+ T cells in the absence of lymphodepletion (0% survival). In conclusion, we have developed a syngeneic immune competent tumor model of hCD19 disease that is highly relevant to the clinical setting. Using this model, we demonstrate the significance of lymphodepletion on the prolonged in vivo persistence and anti-tumor efficacy of 19z1+ T cells. Data derived from this model will be correlated to findings obtained from a recently initiated clinical trial for patients with chronic lymphocytic leukemia, and will significantly impact the design of subsequent trials in the future.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3078-3078
Author(s):  
Diane L Rossi ◽  
Edmund A Rossi ◽  
David M Goldenberg ◽  
Chien-Hsing Chang

Abstract Background Various formats of bispecific antibodies (bsAbs) to redirect effector T cells for the targeted killing of tumor cells have shown considerable promise both pre-clinically and clinically. The scFv-based constructs, including BiTE and DART, which bind monovalently to CD3 on T cells and to the target antigen on tumor cells, exhibit fast blood clearance and neurological toxicity due to their small size (∼55 kDa). Herein, we describe the generation of novel T-cell redirecting trivalent bsAbs comprising an anti-CD3 scFv covalently conjugated to a stabilized F(ab)2. The design was initially characterized with a prototype construct designated (19)-3s, which specifically targets CD19 on B cells. A panel of trivalent bsAbs was evaluated for their potential use in targeted T-cell immunotherapy of various B-cell malignancies. Potential advantages of this design include bivalent binding to tumor cells, a larger size (∼130 kDa) to preclude rapid renal clearance and penetration of the blood-brain barrier, and potent T-cell mediated cytotoxicity. Methods The DOCK-AND-LOCKTM (DNLTM) method was used to generate a panel of B-cell targeting bsAbs, (19)-3s, (20)-3s, (22)-3s, and (C2)-3s, which target CD19, CD20, CD22, and HLA-DR, respectively. This was achieved by combining a stabilized anti-X F(ab)2 with an anti-CD3-scFv, resulting in a homogeneous covalent structure of the designed composition, as shown by LC-MS, SE-HPLC, ELISA, SDS-PAGE, and immunoblot analyses. Each construct can mediate the formation of immunological synapses between T cells and malignant B cells, resulting in T-cell activation. At an E:T ratio of 10:1, using isolated T cells as effector cells, the bsAbs induced potent T-cell-mediated cytotoxicity in various B-cell malignancies, including Burkitt lymphomas (Daudi, Ramos, Namalwa), mantle cell lymphoma (Jeko-1), and acute lymphoblastic leukemia (Nalm-6). A non-tumor binding control, (14)-3s, induced only moderate T-cell killing at >10 nM. The nature of the antigen/epitope, particularly its size and proximity to the cell surface, appears to be more important than antigen density for T-cell retargeting potency (Table 1). It is likely that (20)-3s is consistently more potent than (19)-3s and (C2)-3s, even when the expression of CD19 or HLA-DR is considerably higher than CD20, as seen with Namalwa and Jeko-1, respectively. This is likely because the CD20 epitope comprises a small extracellular loop having close proximity to the cell surface. When compared directly using Daudi, (22)-3s was the least potent. Compared to CD19 and CD20, CD22 is expressed at the lowest density, is a rapidly internalizing antigen, and its epitope is further away from the cell surface; each of these factors may contribute to its reduced potency. Finally, sensitivity to T-cell retargeted killing is cell-line-dependent, as observed using (19)-3s, where Raji (IC50 >3 nM) is largely unresponsive yet Ramos (IC50 = 2 pM) is highly sensitive, even though the former expresses higher CD19 antigen density. Conclusions (19)-3s, (20)-3s, (22)-3s, and (C2)-3s can bind T cells and target B cells simultaneously and induce T-cell-mediated killing in vitro. The modular nature of the DNL method allowed the rapid production of several related conjugates for redirected T-cell killing of various B-cell malignancies, without the need for additional recombinant engineering and protein production. The close proximity of the CD20 extracellular epitope to the cell surface results in the highest potency for (20)-3s, which is an attractive candidate bsAb for use in this platform. We are currently evaluating the in vivo activity of these constructs to determine if this novel bsAb format offers additional advantages. Disclosures: Rossi: Immunomedics, Inc.: Employment. Rossi:Immunomedics, Inc.: Employment. Goldenberg:Immunomedics: Employment, stock options, stock options Patents & Royalties. Chang:Immunomedics, Inc: Employment, Stock option Other; IBC Pharmaceuticals, Inc.: Employment, Stock option, Stock option Other.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 506-506 ◽  
Author(s):  
Carlos A. Ramos ◽  
Barbara Savoldo ◽  
Enli Liu ◽  
Adrian P. Gee ◽  
Zhuyong Mei ◽  
...  

Abstract Adoptive transfer of T cells with a CD19-specific chimeric antigen receptor (CAR) to treat B-cell malignancies shows remarkable clinical efficacy. However, long-term persistence of T cells targeting CD19, a pan-B cell marker, causes sustained depletion of normal B cells and consequent severe hypogammaglobulinemia. In order to target B-cell malignancies more selectively, we exploited the clonal restriction of mature B-cell malignancies, which express either a κ or a λ-light immunoglobulin (Ig) chain. We generated a CAR specific for κ-light chain (CAR.κ) to selectively target κ+ lymphoma/leukemia cells, while sparing the normal B cells expressing the reciprocal λ-light chain, thus minimizing the impairment of humoral immunity. After preclinical validation, we designed a phase I clinical trial in which patients with refractory/relapsed κ+ non-Hodgkin lymphoma (NHL) or chronic lymphocytic leukemia (CLL) are infused with autologous T cells expressing a CAR.κ that includes a CD28 costimulatory domain. The protocol also included patients with multiple myeloma with the aim of targeting putative myeloma initiating cells. Three dose levels (DL) are being assessed, with escalation determined by a continual reassessment method: 0.2 (DL1), 1 (DL2) and 2 (DL3) ×108 T cells/m2. Repeat infusions are allowed if there is at least stable disease after treatment. End points being evaluated include safety, persistence of CAR+T cells and antitumor activity. T cells were generated for 13 patients by activating autologous PBMC with immobilized OKT3 (n=5) or CD3/CD28 monoclonal antibodies (n=8). In 2 patients with >95% circulating leukemic cells, CD3 positive selection was performed using CliniMACS. After transduction, T cells (1.2×107±0.5×107) were expanded ex vivo for 18±4 days in the presence of interleukin (IL)-2 to reach sufficient numbers for dose escalation. CAR expression was 81%±13% by flow cytometry (74,112±23,000 transgene copy numbers/mg DNA). Products were composed predominantly of CD8+ cells (78%±10%), with a small proportion of naïve (5±4%) and memory T cells (17%±12%). CAR+ T cells specifically targeted κ+ tumors as assessed by 51Cr release assays (specific lysis 79%±10%, 20:1 E:T ratio) but not κ–tumors (11%±7%) or the NK-sensitive cell line K562 (26%±13%). Ten patients have been treated: 2 on DL1, 3 on DL2 and 5 on DL3. Any other treatments were discontinued at least 4 weeks prior to T-cell infusion. Patients with an absolute leukocyte count >500/µL received 12.5 mg/kg cyclophosphamide 4 days before T-cell infusion to induce mild lymphopenia. Infusions were well tolerated, without side effects. Persistence of infused T cells was assessed in blood by CAR.κ-specific Q-PCR assay and peaked 1 to 2 weeks post infusion, remaining detectable for 6 weeks to 9 months. Although the CAR contained a murine single-chain variable fragment (scFv), we did not detect human anti-mouse antibodies following treatment and CAR.κ+T cell expansion continued to be observed even after repeated infusions. We detected modest (<20 fold) elevation of proinflammatory cytokines, including IL-6, at the time of peak expansion of T cells, but systemic inflammatory response syndrome (cytokine storm) was absent. No new-onset hypogammaglobulinemia was observed. All 10 patients are currently evaluable for clinical response. Of the patients with relapsed NHL, 2/5 entered complete remission (after 2 and 3 infusions at dose level 1 and 3, respectively), 1/5 had a partial response and 2 progressed; 3/3 patients with multiple myeloma have had stable disease for 2, 8 and 11 months, associated with up to 38% reduction in their paraprotein; and 2/2 patients with CLL progressed before or shortly after the 6-week evaluation. In conclusion, our data indicate that infusion of CAR.κ+ T cells is safe at every DL and can be effective in patients with κ+ lymphoproliferative disorders. Disclosures: Savoldo: Celgene: Patents & Royalties, Research Funding. Rooney:Celgene: Patents & Royalties, Research Funding. Heslop:Celgene: Patents & Royalties, Research Funding. Brenner:Celgene: Patents & Royalties, Research Funding. Dotti:Celgene: Patents & Royalties, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 384-384 ◽  
Author(s):  
Cameron J Turtle ◽  
Daniel Sommermeyer ◽  
Carolina Berger ◽  
Michael Hudecek ◽  
David M Shank ◽  
...  

Abstract BACKGROUND: The adoptive transfer of CD19-specific chimeric antigen receptor-modified (CD19 CAR) T cells is a promising strategy for treating patients with CD19+ B cell acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and non-Hodgkin lymphoma (NHL). Dramatic responses have been observed in a subset of patients receiving CD19 CAR T cell therapy, and prior studies suggest that persistence of transferred T cells may correlate with the extent of tumor regression. The use of unselected T cells to prepare CAR T cells results in variation in the phenotypic composition of the infused product in individual patients, making it difficult to determine whether particular T cell subsets contribute to efficacy and/or toxicity. Studies in our lab demonstrated that genetically modified effector T cells derived from purified T cell subsets differ in the capacity to persist in vivo after adoptive transfer, and that a combination of CAR-modified CD8+ central memory (TCM) and CD4+ T cells provides optimal antitumor activity in tumor xenograft models. Based on these data, we designed the first clinical trial in which patients with CD19+ B cell malignancies receive CD19 CAR T cells comprised of a defined composition of CD8+ TCM and CD4+T cells engineered to express a CD19 CAR. METHODS: Patients with relapsed or refractory CD19+ ALL, CLL or NHL are eligible for this phase I/II study. CD8+ TCM and CD4+ T cells were separately enriched by immunomagnetic selection from a leukapheresis product from each patient, and cryopreserved. The CD8+ TCM and CD4+ T cells were stimulated in independent cultures with anti-CD3/anti-CD28 paramagnetic beads, and transduced with a lentivirus encoding the murine FMC63 anti-CD19 scFv, 4-1BB and CD3 zeta signaling domains. After in vitro expansion, the cell product for infusion was formulated in a 1:1 ratio of CD4+:CD8+ CAR+ T cells. A truncated non-functional human epidermal growth factor receptor (EGFRt) encoded in the transgene cassette allowed identification of transgene-expressing T cells by flow cytometry. Lymphodepleting chemotherapy was administered followed by infusion of EGFRt+ CAR T cells at one of three dose levels (2 x 105 EGFRt+ cells/kg, 2 x 106 EGFRt+ cells/kg, 2 x 107 EGFRt+cells/kg). RESULTS: Twenty patients with relapsed or refractory ALL (n = 9), NHL (n = 10) or CLL (n = 1), including those who failed prior autologous (n = 4) or allogeneic (n = 4) stem cell transplant have been treated on the trial. Fifteen of 20 treated patients received a product that conformed to the prescribed CD8+ T­CM:CD4 composition. Five patients received a product manufactured using a modified strategy either due to low blood lymphocyte counts (n = 3) or due to failure to propagate T cells in culture (n = 2). CD8+ TCM and CD4+ T cells have been isolated from 12 additional patients and cryopreserved for therapy. Patients have been treated at all three dose levels without acute infusional toxicity. Severe cytokine release syndrome (sCRS) consisting of fever, hypotension, and reversible neurotoxicity associated with elevated serum IFN-γ and IL-6 was only observed in ALL patients with a high tumor burden. One ALL patient treated at the highest cell dose died of complications associated with sCRS. None of the NHL patients had sCRS. Of patients who are >6 weeks after CD19 CAR T cell therapy, best responses included complete (n=1) or partial (n=5) remission in 6/9 patients with NHL and complete remission in 5/7 patients with ALL. Both CD4+ and CD8+ CAR-T cells expanded in vivo and could be detected in blood, marrow and CSF. The peak level and duration of persistence of both CD4+ and CD8+ EGFRt+ T cells were associated with clinical response. TCRBV gene sequencing of flow sorted CD4+ and CD8+ EGFRt+CAR T cells from 2 patients showed that proliferating CAR T cells were polyclonal. A subset of NHL patients in whom CAR T cells became undetectable developed a T cell immune response to sequences in the murine CD19-specific scFv component of the CAR transgene. CONCLUSION: Adoptive immunotherapy with CD19 CAR T cells of defined subset composition is feasible and safe in a majority of heavily pretreated patients with refractory B cell malignancies and has potent anti-tumor activity. Persistence of CAR-T cells may be limited in some patients by transgene product immunogenicity. Data from this ongoing clinical trial will be updated at the meeting. Disclosures Turtle: Juno Therapeutics: Research Funding. Berger:Juno Therapeutics: Patents & Royalties. Hudecek:Juno Therapeutics: Patents & Royalties. Jensen:Juno: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Riddell:Juno Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Maloney:Juno Therapeutics: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3002-3002 ◽  
Author(s):  
Lorenz Jahn ◽  
Renate S. Hagedoorn ◽  
Pleun Hombrink ◽  
Michel G.D. Kester ◽  
Dirk M. van der Steen ◽  
...  

Abstract Therapeutic reactivity of CD20-specific monoclonal antibodies (mAb) or CD19-specific chimeric antigen receptor (CAR)-transduced T cells is exerted by targeting extracellular antigens. In contrast to mAbs and CARs, T cell receptors (TCRs) recognize antigen-derived peptides that are bound to human leukocyte antigen (HLA) molecules on the cell surface. Since HLA molecules constantly sample the entire endogenous proteome of a cell, extracellular and intracellular antigens are presented and can thus be recognized by a TCR. Here, we identified the intracellular transcription factor Bob1 encoded by gene POU2AF1 as a suitable target for immunotherapy. Bob1 is highly expressed in CD19+ B cells, acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL) and multiple myeloma (MM) and is absent in the non-B lineages including CD34+ hematopoietic progenitor cells (HPCs), T cells, fibroblasts, keratinocytes and gastrointestinal tract. Bob1 is localized intracellularly but HLA-presented Bob1-derived peptides are accessible on the cell surface to TCRs and can thus be recognized by T cells. From the HLA-presented ligandome (Mol Cell Proteomics, 2013;12:1829) we identified naturally processed Bob1-derived peptides displayed in HLA-A*0201 (HLA-A2) and in HLA-B*0702 (HLA-B7). Since auto-reactivity towards self-antigens such as Bob1 is prevented by depleting high-avidity T cells recognizing self-antigens in self-HLA, we exploited the immunogenicity of these peptides presented in allogeneic HLA. From a HLA-A2/B7-negative healthy individual we isolated T cell clone 4G11 demonstrating high sensitivity and specificity for Bob1-derived peptide Bob144 presented in HLA-B7. Bob1-dependent recognition was demonstrated by transduction of Bob1 into cell lines that otherwise lack Bob1 expression. No harmful toxicities of clone 4G11 were observed against a wide panel of Bob1-negative stimulator cells including HLA-B7-positive CD34+ HPCs, T cells, monocytes, immature and mature dendritic cells, and fibroblasts even under simulated inflamed conditions. Furthermore, stringent HLA-B7-restricted recognition was observed for clone 4G11 when tested against a stimulator panel expressing a wide range of common and rare HLA class I and II molecules. Clone 4G11 demonstrated clinical applicability by efficiently recognizing HLA-B7+ primary ALL, CLL and MCL. Furthermore, reproducible strong recognition of purified primary HLA-B7+ MM could be demonstrated. Therefore, the TCR of clone 4G11 may be used for immunotherapy by administering TCR-transduced T cells to patients suffering from B cell malignancies including multiple myeloma. Retroviral gene transfer of TCR 4G11 led to efficient cell surface expression demonstrated by binding of TCR-transduced CD8+ T cells to pMHC-tetramer composed of peptide Bob144 bound to HLA-B7. TCR-modified CD8+ T cells strongly recognized Bob1-expressing HLA-B7+ multiple myeloma cell lines U266 and UM9, and ALL cell lines. TCR-modified T cells efficiently lysed HLA-B7+ primary ALL, CLL and MCL at very low effector-to-target ratios. In addition, highly purified primary multiple myeloma samples were also readily lysed. Furthermore, TCR-transduced T cells strongly proliferated in an antigen-specific manner when stimulated with primary malignant cell samples including ALL, CLL, and MCL or MM cell lines. As expected, TCR-transduced T cells also lysed autologous primary and CD40L-stimulated B cells since these targets cells also express Bob1. In contrast, no lysis of Bob1-negative autologous primary and activated T cells, or monocytes was observed when co-cultured with TCR-transduced T cells. In summary, we identified the intracellular transcription factor Bob1 encoded by gene POU2AF1 as a suitable target for TCR-based immunotherapies of B cell malignancies. Bob1-specific T cell clone 4G11 efficiently recognized primary B cell leukemia and multiple myeloma. Gene transfer of TCR of clone 4G11 installed Bob1-reactivity and specificity onto recipient T cells shown here by cytolytic capacity and proliferation upon antigen encounter. TCR gene transfer approaches using this Bob1-specific TCR can bring novel treatment modalities and possibly curative therapy to patients with B cell malignancies including multiple myeloma. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 99-99 ◽  
Author(s):  
Jennifer N Brudno ◽  
Robert Somerville ◽  
Victoria Shi ◽  
Jeremy J. Rose ◽  
David C. Halverson ◽  
...  

Introduction Progressive malignancy is the leading cause of death after allogeneic hematopoietic stem cell transplantation (alloHSCT). After alloHSCT, B-cell malignancies are often treated with infusions of unmanipulated donor lymphocytes (DLIs) from the transplant donor. DLIs are frequently not effective at eradicating malignancy, and DLIs often cause graft-versus-host disease (GVHD), which is a potentially lethal allogeneic immune response against normal recipient tissues. Methods We conducted a clinical trial of allogeneic T cells that were genetically engineered to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. The CAR was encoded by a gamma-retroviral vector and included a CD28 costimulatory domain. Patients with B-cell malignancies after alloHSCT received a single infusion of CAR T cells. No chemotherapy or other therapies were administered. The T cells were obtained from each recipient's alloHSCT donor. Findings Eight of 20 treated patients obtained remissions, including 6 complete remissions (CR) and 2 partial remissions. The response rate was highest for acute lymphoblastic leukemia with 4/5 patients obtaining minimal-residual-disease-negative CRs, but responses also occurred in chronic lymphocytic leukemia (CLL) and lymphoma. The longest ongoing CR is 30+ months in a patient with CLL. No patient developed new-onset acute GVHD after CAR T-cells were infused. Toxicities included fever, tachycardia, and hypotension. Median peak blood CAR T-cell levels were higher in patients who obtained remissions (39 CAR+ cells/mL) than in patients who did not obtain remissions (2 CAR+ cells/mL, P=0.001). Presence of endogenous normal or malignant blood B lymphocytes before CAR T-cell infusion was associated with higher post-infusion median blood CAR T-cell levels (P=0.04). Compared to patients who did not obtain a remission of their malignancies, patients obtaining remissions had a higher CD8:CD4 ratio of blood CAR+ T cells at the time of peak CAR T-cell levels (P=0.007). The mean percentage of CAR+CD8+ T cells expressing the programmed cell death-1 (PD-1) protein increased from 12% at the time of infusion to 82% at the time of peak blood CAR T-cell levels (P<0.0001). The mean percentage of CAR+CD4+ T cells expressing PD-1 increased from 32% at the time of infusion to 91% at the time of peak blood CAR T-cell levels (P<0.0001). Interpretation Infusion of allogeneic anti-CD19 CAR T cells is a promising approach for treating B-cell malignancies after alloHSCT. Our findings point toward a future in which antigen-specific T-cell therapies will be an important part of the field of allogeneic hematopoietic stem cell transplantation. Table. PatientNumber Malignancy Transplant type Total T cellsinfused/kg Anti-CD19CAR-expressingT cells infused/kg Malignancyresponseat last follow-up(interval from infusion to last follow-up in months) 1 CLL URD 10/10 HLA match 1x106 0.4x106 SD (3) 2 DLBCL Sibling 2x106 0.7x106 SD (1) 3 CLL Sibling 4x106 2.4x106 PD 4 DLBCL Sibling 4x106 2.2x106 SD (31+) 5 CLL URD 10/10 HLA match 1.5x106 1.0x106 CR (30+) 6 MCL Sibling 7x106 4.6x106 SD (3) 7 CLL URD 10/10 HLA match 1x106 0.7x106 PD 8 MCL Sibling 7x106 3.9x106 SD (24+) 9 MCL URD 10/10 HLA match 4x106 2.2x106 PR (3) 10 MCL Sibling 10x106 7.8x106 SD (2) 11 CLL URD 9/10 HLA match 5x106 3.1x106 PR (12+) 12 ALL Ph+ Sibling 7x106 5.2x106 MRD-negative CR (15+) 13 MCL Sibling 10x106 7.1x106 SD (9) 14 ALL Ph-neg Sibling 10x106 7.0x106 MRD-negative CR (5) 15 ALL Ph-neg Sibling 10x106 6.9x106 MRD-negative CR (3) 16 ALL Ph-neg Sibling 7x106 5.6x106 PD 17 DLBCL Sibling 10x106 8.2x106 CR (6+) 18 DLBCL Sibling 10x106 3.1x106 SD (2) 19 FL transformed to DLBCL URD 10/10 HLA match 5x106 4.3x106 PD 20 ALL Ph-neg URD 9/10 HLA match 5x106 4.2x106 MRD-negative CR (3+)^ CLL, chronic lymphocytic leukemia; ALL Ph+, Philadelphia chromosome positive acute lymphoblastic leukemia; ALL Ph-neg, Philadelphia chromosome negative acute lymphoblastic leukemia; MCL, mantle cell lymphoma; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; Sibling, human leukocyte antigen-matched sibling donor; URD, unrelated donor; HLA, human leukocyte antigen; PD, progressive disease; SD, stable disease; PR, partial remission; CR, complete remission; MRD-negative, minimal residual disease negative. ^Patient 20 underwent a second alloHSCT 3.5 months after anti-CD19 CAR T-cell infusion while in MRD-negative CR. Disclosures Goy: Celgene: Consultancy, Research Funding, Speakers Bureau; Allos, Biogen Idec, Celgene, Genentech, and Millennium. Gilead: Speakers Bureau. Rosenberg:Kite Pharma: Other: CRADA between Surgery Branch-NCI and Kite Pharma.


Sign in / Sign up

Export Citation Format

Share Document