Influence of Different Components of the Tumor Microenvironment on Human Patient-Derived Lymphoma Cell Engraftment in Immmunodeficient Mice

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1459-1459
Author(s):  
Cordula Tschuch ◽  
Kerstin Klingner ◽  
Dorothee Lenhard ◽  
Cyrill Rentsch ◽  
Christian Wetterauer ◽  
...  

Abstract Patient-derived xenografts (PDX) have become reliable tools for preclinical research for many types of cancer. We recently reported the establishment of 4 human diffuse-large B-cell lymphoma (DLBCL) PDX in mice arising from patient prostate carcinoma tissue (Wetterauer,C. et al. 2015). All PDX were EBV associated and of ABC subtype as determined by the new algorithm of Choi et al. 2009. In contrast, none of the donor patients showed clinical or histological evidence of lymphoma disease. To address the question why lymphoma engraftment takes place in immunodeficient mice whereas patients do not show clinical evidence of disease, we compared growth behavior of the DLBCL PDX in 4 different mouse strains harboring different immunological deficiencies. Furthermore using 3 different implantation routes the dissemination behavior of these models into different immunological niches was evaluated. Results were compared to a similar study carried out with an EBV negative DLBCL PDX of a secondary, cerebral lymphoma (ABC-subtype). None of 4 EBV+ DLBCL PDX showed tumor growth after implantation in NMRI nu/nu (B- cells+, T cells-, NK cells+, n=5 mice/PDX) or 1147-F mice (B cells-, T cells+, NK cells+ n=5 mice/PDX). Subcutaneous implantation into NOD/SCID mice (B cells-, T cells-, NK cells+ n=5 mice/PDX) revealed tumor growth for 2 of 4 lymphomas displaying take rates of 80% (4 out of 5 mice) and 100% (5 out of 5 mice) within one model. Infiltration of murine NK cells in tumor tissue was determined by IHC (analyses ongoing). All 4 EBV+ lymphoma models showed stable growth in NOG mice (B cells-, T cells-, NK cells- n= 10 - 12 mice/PDX) with a take rate of 100% and an average passaging time of 20 days, ranging from 14 to 26 depending on the specific model. Taken together these results indicate that tumor growth of EBV+ lymphomas in mice depends on the NK cell activity as well as the B- and T cells status of the recipient mouse. These cell populations control tumor engraftment in mice, which might explain the absence of lymphoma disease in donor patients. In contrast the PDX of a clinically apparent EBV- DLBCL patient was able to circumvent NK cell block in NMRI nu/nu mice and showed similar take rates (100%, 5 out of 5 engrafted mice) but prolonged passaging times (35 days) as compared to NOG (26 days). Comparison of tumor cell engraftment after subcutaneous (s.c.), intravenous (i.v.) and intratibial (i.t.) injection of tumor cells in NOG mice revealed disseminated tumor growth for the EBV- DLBCL PDX exclusively when injected i.v. or i.t.. After subcutaneous implantation of lymphoma material, no tumor cells could be detected by flow cytometry or IHC in lymph nodes, blood, spleen, brain, liver, lung or bone marrow of recipient mice. However, lymphoma cells could be detected in liver and bone marrow of all (n= 8) i.v. and i.t. injected mice. Currently we are analyzing the dissemination behavior of the EBV+ lymphomas after injection into the different immunological niches as described above. In summary these data highlight the importance of the tumor microenvironment in lymphoma engraftment and dissemination in vivo. Accordingly we could show for our EBV associated lymphoma models that NK-, T- and B cell population control engraftment in vivo and are possibly involved in controlling EBV+ transformed lymphatic cells in patients. Furthermore, we showed that injection into the biologically relevant niche enables lymphoma cells to form multiple tumor nodules in distinct organs in vivo. These models contribute to a better understanding of the interplay between lymphoma cells and their microenvironment. They will thereby facilitate the discovery of new targets for innovative anti-lymphoma treatment strategies. Disclosures Tschuch: Oncotest GmbH: Employment. Klingner:Oncotest GmbH: Employment. Lenhard:Oncotest GmbH: Employment. Haapaniemi:Biositehisto Oy: Employment. Schueler:Oncotest GmbH: Employment.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3642-3642 ◽  
Author(s):  
Purvi Gada ◽  
Michelle Gleason ◽  
Valarie McCullar ◽  
Philip B. McGlave ◽  
Jeffrey S. Miller

Abstract Allogeneic NK cells may play a therapeutic role in treating patients with AML. We have previously shown that high dose cyclophosphamide (120 mg/kg × 1 day) and fludarabine (125 mg/m2 × 5 days) can clear lymphoid space and induce a surge of endogenous IL-15 to expand haploidentical NK cells obtained from CD3-depleted lymphapheresis products from adult donors. In this initial study, 5 of 19 patients achieved remissions and in vivo NK cell expansion. Limitations of this therapy includeinability of NK cells to expand in most patients,development of PTLD (in one patient) andinadequate disease control.We hypothesized that contaminating T cells could compete for NK cell expansion, that B-cells may contribute to PTLD, and that a 2-step NK cell purification method using CD3 depletion followed by CD56 selection (CliniMacs) may overcome these problems. We tested this in 9 patients with advanced AML. The purified NK cells, activated with 1000 U/ml IL-2 (16–20 hours), were infused 48 hours after the last fludarabine dose. Patients then received subcutaneous IL-2 (10 MU) every other day × 6 doses to expand NK cells in vivo. None of the 9 pts treated on this protocol achieved remission or exhibited evidence of in vivo expansion. Several studies were designed to investigate this unexpected result. First, we found that the more extensive processing resulted in approximately 1/3 the NK cell recovery compared to CD3 depletion alone (38±% viable NK cells vs. 91±2% respectively). In addition, we questioned whether the contaminating B cells and monocytes that were removed in the 2-step depletion strategy had served a critical role in NK cell activation or expansion. Cytotoxicity assays performed against K562 targets showed that the killing was about 3-fold higher with the purified (CD3-CD56+) product compared the CD3-depleted product alone (P=0.001 at E:T of 6.6:1). Proliferation, measured by a 6-day thymidine assay, was higher in proportion to the higher NK cell content. The only difference between the two NK products was their expansion after 14 days of culture, where the CD3-depleted product, with contaminating B-cells and monocytes, gave rise to greater NK cell expansion (14 ±3-fold) compared to the 2-step purified product (4.5±0.9, n=6, P=0.005). If this finding holds true in vivo, the co-infusion of accessory cells may be required for NK cell expansion. We next developed in vitro assays using very low concentrations (0.5 ng/ml) of IL-2 and IL-15 to understand their role in expansion. IL-2 or IL-15 alone induced low proliferation and the combination was synergistic. Lastly, UCB, a rich source of NK cell precursors, was compared to adult NK cells. In a short term proliferation assay, CD56+ NK cells stimulated with IL-2 + IL-15 expanded better from adult donors (61274±12999, n=6) than from UCB (20827± 6959, n=5, P=0.026) but there was no difference after 14 days in expansion culture suggesting that the only difference is in kinetics. However, UCB depleted of T-cells (enriching for NK cell precursors) exhibited higher fold expansion over 14 days under different culture conditions conducive to NK cell progenitors. In conclusion, NK cell expansion in vitro depends on cell source, IL-2 and IL-15 (increased in vivo after lymphoid depleting chemotherapy) as well as accessory cells. The role of these factors to enhance in vivo expansion is under clinical investigation to further exploit the NK cell alloreactivity against AML targets.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 407-407
Author(s):  
Frank Cichocki ◽  
Jode P Goodridge ◽  
Ryan Bjordahl ◽  
Svetlana Gaidarova ◽  
Sajid Mahmood ◽  
...  

Abstract Treatments for B-cell malignancies have improved over the past several decades with clinical application of the CD20-specific antibody rituximab and chimeric antigen receptor (CAR) T cells targeting CD19. Despite the success of these therapies, loss of CD20 after rituximab treatment has been reported in leukemia and lymphoma patients. Additionally, up to 50% of all patients receiving anti-CD19 CAR T-cell therapy relapse within the first year with many of those patients exhibiting CD19 loss. Thus, new therapeutic approaches are needed to address tumor antigen escape. Accordingly, we generated triple gene-modified iPSC-derived NK (iNK) cells, termed "iDuo" NK cells, tailored to facilitate multi-antigen targeting. The iPSC line was clonally engineered to express high-affinity, non-cleavable CD16a (hnCD16), an anti-CD19 CAR optimized for NK cell signaling, and a membrane-bound IL-15/IL-15R fusion (IL-15RF) molecule to enhance NK cell persistence (Fig. 1A). To model antigen escape, we generated CD19 knockout AHR77 lymphoma cells alongside wild type AHR77 cells (both CD20 +) as targets in cytotoxicity assays. Activated peripheral blood NK (PBNK) cells, non-transduced iNK cells, and iDuo NK cells were tested as effectors. Unlike PBNK cells or non-transduced iNK cells, iDuo NK cells efficiently eliminated wild type AHR77 cells with or without the addition of rituximab at all tested E:T ratios. Similarly, iDuo NK cells in combination with rituximab were uniquely able to efficiently eliminate CD19 KO AHR77 cells due to enhanced antibody-dependent cellular cytotoxicity (ADCC) driven by hnCD16 (Fig. 1B-E). Cytotoxicity mediated by iDuo NK cells was also evaluated using primary chronic lymphocytic leukemia (CLL) cells. Compared to expanded PBNK cells and non-transduced iNK cells, only iDuo NK cells (in the absence of rituximab) were able to kill primary CLL cells (Fig. 1F). Expression of IL-15RF by iDuo NK cells uniquely supports in vitro expansion without the need for cytokine supplementation. To determine whether IL-15RF supports in vivo persistence of iDuo NK cells, CD19 CAR iNK cells (lacking IL-15RF) and iDuo NK cells were injected into NSG mice without the addition of cytokines or CD19 antigen availability. iDuo NK cell numbers peaked within a week after injection and persisted at measurable levels for ~5 weeks, in marked contrast to CD19 CAR iNK cell numbers that were undetectable throughout (Fig. 1G). To evaluate the in vivo function of iDuo NK cells, NALM6 leukemia cells were engrafted into NSG mice. Groups of mice received tumor alone or were treated with 3 doses of thawed iDuo NK cells. iDuo NK cells alone were highly effective in this model as evidenced by complete survival of mice in the treatment group (Fig. 1H). To assess iDuo NK cells in a more aggressive model, Raji lymphoma cells were engrafted, and groups of mice received rituximab alone, iDuo NK cells alone, or iDuo NK cells plus rituximab. Mice given the combination of iDuo NK cells and rituximab provided extended survival compared to all other arms in the aggressive disseminated Raji lymphoma xenograft model (Fig. 1I). One disadvantage of anti-CD19 CAR T cells is their inability to discriminate between healthy and malignant B cells. Because NK cells express inhibitory receptors that enable "self" versus "non-self" discrimination, we reasoned that iDuo NK cells could have higher cytotoxicity against tumor cells relative to healthy B cells. To address this, we labeled Raji cells, CD19 + B cells from healthy donor peripheral blood mononuclear cells (PBMCs) and CD19 - PBMCs. Labeled populations of cells were co-cultured with iDuo NK cells, and specific killing was analyzed. As expected, iDuo NK cells did not target CD19 - PBMCs. Intriguingly, iDuo NK cells had much higher cytotoxic activity against Raji cells compared to primary CD19 + B cells, suggesting a preferential targeting of malignant B cells compared to healthy B cells. Together, these results demonstrate the potent multi-antigen targeting capability and in vivo antitumor function of iDuo NK cells. Further, these data suggest that iDuo NK cells may have an additional advantage over anti-CD19 CAR T cells by discriminating between healthy and malignant B cells. The first iDuo NK cell, FT596, is currently being tested in a Phase I clinical trial (NCT04245722) for the treatment of B-cell lymphoma. Figure 1 Figure 1. Disclosures Cichocki: Gamida Cell: Research Funding; Fate Therapeutics, Inc: Patents & Royalties, Research Funding. Bjordahl: Fate Therapeutics: Current Employment. Gaidarova: Fate Therapeutics, Inc: Current Employment. Abujarour: Fate Therapeutics, Inc.: Current Employment. Rogers: Fate Therapeutics, Inc: Current Employment. Huffman: Fate Therapeutics, Inc: Current Employment. Lee: Fate Therapeutics, Inc: Current Employment. Szabo: Fate Therapeutics, Inc: Current Employment. Wong: BMS: Current equity holder in publicly-traded company; Fate Therapeutics, Inc: Current Employment. Cooley: Fate Therapeutics, Inc: Current Employment. Valamehr: Fate Therapeutics, Inc.: Current Employment. Miller: Magenta: Membership on an entity's Board of Directors or advisory committees; ONK Therapeutics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Vycellix: Consultancy; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Wugen: Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yangyang Li ◽  
Yu Zhang ◽  
Guoshuai Cao ◽  
Xiaodong Zheng ◽  
Cheng Sun ◽  
...  

Abstract Background Although checkpoint-based immunotherapy has shown exciting results in the treatment of tumors, around 70% of patients have experienced unresponsiveness. PVRIG is a recently identified immune checkpoint receptor and blockade of which could reverse T cell exhaustion to treat murine tumor; however, its therapeutic potential via NK cells in mice and human remains seldom reported. Methods In this study, we used patient paraffin-embedded colon adenocarcinoma sections, various murine tumor models (MC38 colon cancer, MCA205 fibrosarcoma and LLC lung cancer), and human NK cell- or PBMC-reconstituted xenograft models (SW620 colon cancer) to investigate the effect of PVRIG on tumor progression. Results We found that PVRIG was highly expressed on tumor-infiltrating NK cells with exhausted phenotype. Furthermore, either PVRIG deficiency, early blockade or late blockade of PVRIG slowed tumor growth and prolonged survival of tumor-bearing mice by inhibiting exhaustion of NK cells as well as CD8+ T cells. Combined blockade of PVRIG and PD-L1 showed better effect in controlling tumor growth than using either one alone. Depletion of NK or/and CD8+ T cells in vivo showed that both cell types contributed to the anti-tumor efficacy of PVRIG blockade. By using Rag1−/− mice, we demonstrated that PVRIG blockade could provide therapeutic effect in the absence of adaptive immunity. Further, blockade of human PVRIG with monoclonal antibody enhanced human NK cell function and inhibited human tumor growth in NK cell- or PBMC-reconstituted xenograft mice. Conclusions Our results reveal the importance of NK cells and provide novel knowledge for clinical application of PVRIG-targeted drugs in future.


Author(s):  
Shannon L. McArdel ◽  
Anne-Sophie Dugast ◽  
Maegan E. Hoover ◽  
Arjun Bollampalli ◽  
Enping Hong ◽  
...  

AbstractRecombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hee Young Na ◽  
Yujun Park ◽  
Soo Kyung Nam ◽  
Jiwon Koh ◽  
Yoonjin Kwak ◽  
...  

Abstract Background Natural killer (NK) cells mediate the anti-tumoral immune response as an important component of innate immunity. The aim of this study was to investigate the prognostic significance and functional implication of NK cell-associated surface receptors in gastric cancer (GC) by using multiplex immunohistochemistry (mIHC). Methods We performed an mIHC on tissue microarray slides, including 55 GC tissue samples. A total of 11 antibodies including CD57, NKG2A, CD16, HLA-E, CD3, CD20, CD45, CD68, CK, SMA, and ki-67 were used. CD45 + CD3-CD57 + cells were considered as CD57 + NK cells. Results Among CD45 + immune cells, the proportion of CD57 + NK cell was the lowest (3.8%), whereas that of CD57 + and CD57- T cells (65.5%) was the highest, followed by macrophages (25.4%), and B cells (5.3%). CD57 + NK cells constituted 20% of CD45 + CD57 + immune cells while the remaining 80% were CD57 + T cells. The expression of HLA-E in tumor cells correlated with that in tumoral T cells, B cells, and macrophages, but not CD57 + NK cells. The higher density of tumoral CD57 + NK cells and tumoral CD57 + NKG2A + NK cells was associated with inferior survival. Conclusions Although the number of CD57 + NK cells was lower than that of other immune cells, CD57 + NK cells and CD57 + NKG2A + NK cells were significantly associated with poor outcomes, suggesting that NK cell subsets play a critical role in GC progression. NK cells and their inhibitory receptor, NKG2A, may be potential targets in GC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paul D. Bates ◽  
Alexander L. Rakhmilevich ◽  
Monica M. Cho ◽  
Myriam N. Bouchlaka ◽  
Seema L. Rao ◽  
...  

Management for high-risk neuroblastoma (NBL) has included autologous hematopoietic stem cell transplant (HSCT) and anti-GD2 immunotherapy, but survival remains around 50%. The aim of this study was to determine if allogeneic HSCT could serve as a platform for inducing a graft-versus-tumor (GVT) effect against NBL with combination immunocytokine and NK cells in a murine model. Lethally irradiated C57BL/6 (B6) x A/J recipients were transplanted with B6 bone marrow on Day +0. On day +10, allogeneic HSCT recipients were challenged with NXS2, a GD2+ NBL. On days +14-16, mice were treated with the anti-GD2 immunocytokine hu14.18-IL2. In select groups, hu14.18-IL2 was combined with infusions of B6 NK cells activated with IL-15/IL-15Rα and CD137L ex vivo. Allogeneic HSCT alone was insufficient to control NXS2 tumor growth, but the addition of hu14.18-IL2 controlled tumor growth and improved survival. Adoptive transfer of ex vivo CD137L/IL-15/IL-15Rα activated NK cells with or without hu14.18-IL2 exacerbated lethality. CD137L/IL-15/IL-15Rα activated NK cells showed enhanced cytotoxicity and produced high levels of TNF-α in vitro, but induced cytokine release syndrome (CRS) in vivo. Infusing Perforin-/- CD137L/IL-15/IL-15Rα activated NK cells had no impact on GVT, whereas TNF-α-/- CD137L/IL-15/IL-15Rα activated NK cells improved GVT by decreasing peripheral effector cell subsets while preserving tumor-infiltrating lymphocytes. Depletion of Ly49H+ NK cells also improved GVT. Using allogeneic HSCT for NBL is a viable platform for immunocytokines and ex vivo activated NK cell infusions, but must be balanced with induction of CRS. Regulation of TNFα or activating NK subsets may be needed to improve GVT effects.


2019 ◽  
Vol 20 (18) ◽  
pp. 4490 ◽  
Author(s):  
Maria G. Desimio ◽  
Daniela A. Covino ◽  
Margherita Doria

Viral persistency in latently infected CD4+ T cells despite antiretroviral therapy (ART) represents a major drawback in the fight against HIV-1. Efforts to purge latent HIV-1 have been attempted using latency reversing agents (LRAs) that activate expression of the quiescent virus. However, initial trials have shown that immune responses of ART-treated patients are ineffective at clearing LRA-reactivated HIV-1 reservoirs, suggesting that an adjuvant immunotherapy is needed. Here we overview multiple lines of evidence indicating that natural killer (NK) cells have the potential to induce anti-HIV-1 responses relevant for virus eradication. In particular, we focus on the role of the NKG2D activating receptor that crucially enables NK cell-mediated killing of HIV-1-infected cells. We describe recent data indicating that LRAs can synergize with HIV-1 at upregulating ligands for NKG2D (NKG2DLs), hence sensitizing T cells that exit from viral latency for recognition and lysis by NK cells; in addition, we report in vivo and ex vivo data showing the potential benefits and drawbacks that LRAs may have on NKG2D expression and, more in general, on the cytotoxicity of NK cells. Finally, we discuss how the NKG2D/NKG2DLs axis can be exploited for the development of effective HIV-1 eradication strategies combining LRA-induced virus reactivation with recently optimized NK cell-based immunotherapies.


Blood ◽  
2005 ◽  
Vol 106 (13) ◽  
pp. 4370-4376 ◽  
Author(s):  
Sarah Cooley ◽  
Valarie McCullar ◽  
Rosanna Wangen ◽  
Tracy L. Bergemann ◽  
Stephen Spellman ◽  
...  

Although unrelated hematopoietic cell transplantation (HCT) is curative for many hematologic malignancies, complications and relapse remain challenging obstacles. Natural killer (NK) cells, which recover quickly after transplantation, produce cytokines and express killer immunoglobulin-like receptors (KIRs) that regulate their cytotoxicity. Some clinical trials based on a KIR ligand mismatch strategy are associated with less relapse and increased survival, but results are mixed. We hypothesized that T cells in the graft may affect NK cell function and KIR expression after unrelated transplantation and that these differences correlate with clinical outcomes. NK cell function was evaluated using 77 paired samples from the National Marrow Donor Program Research Repository. Recipient NK cells at 100 days after both unmanipulated bone marrow (UBM) and T-cell depleted (TCD) transplants were compared with NK cells from their healthy donors. NK cells expressed fewer KIRs and produced more interferon γ (IFN-γ) after UBM compared to TCD transplants. Multivariate models showed that increased NK cell IFN-γ production correlated with more acute graft-versus-host disease (GVHD), and decreased KIR expression correlated with inferior survival. These results support the notion that T cells in the graft affect NK cell reconstitution in vivo. Understanding these mechanisms may result in strategies to improve clinical outcomes from unrelated HCT.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1404-1404
Author(s):  
Steve D. Hughes ◽  
Ken Bannink ◽  
Cecile Krejsa ◽  
Mark Heipel ◽  
Becky Johnson ◽  
...  

Abstract Interleukin 21 (IL-21) is an IL-2 family cytokine produced by activated CD4+ T cells. Potent effects of IL-21 have been observed on the growth, survival, and functional activation of T cells, B cells, and natural killer (NK) cells. A Phase I clinical trial of IL-21 in metastatic melanoma and renal cell carcinoma is currently in progress. We recently reported that IL-21 significantly enhanced rituximab mediated clearance of CD20+ lymphoma cell lines both in vitro and in vivo, and that these effects were potentially mediated through IL-21 enhancement of NK cell capacity to effect antibody dependent cellular cytotoxicity (ADCC). Specifically, NK cells treated with IL-21 showed increased cytotoxicity, granzyme B and IFNg production. Current studies aim to further evaluate the mechanisms by which IL-21 enhances ADCC. A number of observations suggest a multi-factorial basis for IL-21 synergy with rituximab. In a xenograft tumor model, SCID mice were injected IV with HS Sultan cells on day 0. Treatment with recombinant murine IL-21 (mIL-21; starting day 1) combined with rituximab (starting day 3) resulted in significantly increased survival (70% vs. 20% on day 100), compared to rituximab alone. In separate studies, the spleens of mice treated with mIL-21 showed increased numbers of activated macrophages and granulocytes. As macrophages and granulocytes can participate in ADCC, IL-21 synergy with rituximab in vivo may be partly dependent on its activation of these cell types. We have also evaluated whether direct effects of IL-21 on lymphoma cells contribute to enhancement of rituximab efficacy. The xenogeneic B lymphoma models in which IL-21 plus rituximab exhibited enhanced survival are highly aggressive and these models were not shown to respond to treatment with mIL-21 alone. In vitro studies were performed to determine if IL-21 could potentiate the growth inhibitory and pro-apoptotic effects of rituximab. In the absence of effector cells synergistic interaction was not observed. In addition, we tested the ability of IL-21 to enhance cytotoxicity when combined with antibodies targeting non-hematopoietic tumor cells (e.g. trastuzumab). Human NK cells treated with IL-21 displayed significantly increased cytotoxicity in ADCC assays using trastuzumab to target breast cancer cells expressing varying levels of HER-2 antigen. In summary, the current evidence suggests that IL-21 can enhance antibody-mediated tumor cell lysis through activation of multiple effectors of ADCC. Thus IL-21 may prove to be broadly applicable to monoclonal antibody therapy of cancer.


Sign in / Sign up

Export Citation Format

Share Document