scholarly journals Inhibition of MEK and DDR Pathways Induces Synergistic Killing of Novel Mll-Af4 B-ALL Model Harboring Activated Ras Mutations

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1511-1511
Author(s):  
Evelyn J Song ◽  
S. Haihua Chu ◽  
Janna Minehart ◽  
Jonathan Chabon ◽  
Richard Koche ◽  
...  

Abstract Childhood B-cell acute lymphoblastic leukemia (B-ALL) that harbor a translocation of the MLL1 and AF4 genes are considered high-risk with poor prognosis (event-free survival (EFS) of 35%-50%), especially when compared to non-MLL-rearranged (MLL-R) childhood ALL (EFS >85%). An important obstacle to developing new therapeutic approaches for this patient population is the lack of models that faithfully recapitulate the short latency and aggressiveness of this disease. Recently, whole genome sequencing of patient childhood MLL-R leukemias revealed that activating mutations of the proto-oncogenes involved in signaling, most prominently, N or K-RAS were found in nearly 50% of patients. Patients with these co-occurring mutations have an even poorer overall survival rate, indicating that a model harboring both mutations is of extreme interest. Here, we report the generation of a highly aggressive, serially transplantable B-ALL by the retroviral overexpression of activating N-RasG12D mutant in bone marrow of an inducible knock-in Mll-Af4 murine model that we have previously published. Recipient mice injected with Mll-Af4/N-RasG12Dpre-leukemic bone marrow cells developed an acute B-ALL (B220+CD43+IgM-) with short latency to development of disease (median 35 days). Furthermore, the resultant primary B-ALL was serially transplantable into sub-lethally irradiated recipients with accelerated latency to secondary and tertiary disease developing at a median of 20 and 12 days, respectively. As our model includes an activating mutation in N-Ras, we wanted to see if the cells would be sensitive to small molecule inhibitors of downstream effectors of Ras. Pre-leukemic Mll-Af4/N-RasG12D cells were sensitive to two different MEK inhibitors, Trametinib or PD901, in vitro. Furthermore, in vivo treatment of tertiary B-ALL mice with Trametinib showed significant reduction in leukemia burden after 7 days of treatment, as well as increase in survival, compared to vehicle controls. However, prolonged in vivo treatment with Trametinib eventually led to loss of sensitivity and development of B-ALL in our mouse model, suggesting that Trametinib alone is insufficient to prevent leukemia progression. As single agent MEK inhibition was insufficient to generate long-term durable responses, we conducted RNA-Sequencing of primary Mll-Af4/N-RasG12D leukemias to discover pathways amenable for therapeutic intervention. Gene set enrichment analysis suggested that targeting the DNA damage response (DDR) pathway as an attractive therapeutic opportunity. We were able to demonstrate an increased basal level of replicative stress in our Mll-Af4/NrasG12D pre-leukemic cells and sensitivity to small molecule inhibition of ATR, a master regulator of the G2 to M transition of cell cycle progression, with AZ20, a selective ATR inhibitor. In vitro and in vivo treatment with AZ20 led to increased leukemia cytotoxicity. However, similar to Trametinib treatment, tertiary B-ALL mice eventually succumbed to disease with prolonged AZ20 treatment in vivo. Since neither single agent MEK nor ATR inhibition could prevent leukemic progression in vivo, we tested the combination and found increased cytotoxicity and cell cycle arrest in vitro at concentrations well below the IC50, as compared to single agent treatment. In vivocombination treatment also demonstrated decreased leukemia burden and significant prolonged survival compared to either AZ20 or Trametinib alone. Lastly, we tested out the efficacy of combination therapy in human B-ALL patient derived xenograft harboring both MLL-AF4 and activating N-RASmutations. 250,000 human primary leukemic blasts were transplanted into non-irradiated immune-compromised mice and treated with vehicle, single agent, or the combination for 14 days. Similar to the results seen in our mouse model, combination treatment with Trametinib and AZ20 led to significant reductions in leukemic burden. In summary, our model of B-ALL faithfully recapitulates the short latency and aggressiveness of this disease and was predictive of response in human patient samples harboring MLL-AF4 and activating N-RAS mutations to small molecule inhibitor therapy to MEK and DDR pathways. In the future, this model can be used as a platform to not only better understand the molecular events governing and sustaining leukemogenesis, but also as a discovery platform for novel therapeutic combinations. Disclosures Armstrong: Epizyme, Inc: Consultancy; Vitae Pharmaceuticals: Consultancy; Imago Biosciences: Consultancy; Janssen Pharmaceutical: Consultancy.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3478-3478
Author(s):  
Dale Wright ◽  
Shannon L. Winski ◽  
Deborah Anderson ◽  
Patrice Lee ◽  
Mark Munson ◽  
...  

Abstract Multiple myeloma (MM) is characterized by the expansion of malignant plasma cells within the bone marrow. Their growth, survival, and migration are mediated in part via cytokines. Interleukin 6 (IL-6) is necessary for sustaining the in vitro growth of many MM cell lines and enhancing the proliferation of explanted human myeloma cells. The mitogen-activated protein kinase family member, p38, is activated by cytokines and growth factors and plays a significant role in inflammatory diseases. However, its role in the pathogenesis of multiple myeloma is poorly understood. Specific p38 inhibitors inhibit paracrine MM cell growth which is associated with IL-6 and VEGF secretion from bone marrow stromal cells (BMSCs). Furthermore, p38 inhibition blocks TNF-alpha-induced IL-6 secretion in BMSCs, thereby further inhibiting MM cell growth and survival. Although these data suggest an important role for p38 in MM, the direct effects of p38 inhibiton on MM has not been extensively explored. Therefore, we investigated the effects of p38 inhibition on in vitro and in vivo IL-6 production and MM cell growth in vivo after lipopolysaccaride (LPS) stimulation. LPS has been shown to induce various cytokines, including TNF-alpha and IL-6, via the p38 pathway. ARRY-797, an orally bioavailable, small molecule inhibitor of p38 directly inhibited LPS-induced IL-6 production from RPMI-8226 (IC50 = 100 pM) in vitro. In SCID-beige mice, LPS (3 μg/kg) induced IL-6 (7897 ± 827 pg/mL) and TNF-alpha (1922 ± 282 pg/mL) after 2 hours and these cytokines were inhibited by oral administration of ARRY-797 (30 mg/kg) by 91% and 95%, respectively. In MM xenograft models, ARRY-797 (30 mg/kg, BID, PO) inhibited RPMI 8226 tumor growth by 72% as a single agent and by 56% when LPS was administered to stimulate growth in vivo. In addition, ARRY-797 inhibited LPS-induced phosphorylation of p38 in RPMI-8226 xenografts. Together, these data support a role for p38 in IL-6-mediated growth of multiple myelomas. To our knowledge, ARRY-797 is the first small molecule p38 inhibitor to demonstrate single agent activity in a MM xenograft model and it has been advanced into preclinical development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guping Mao ◽  
Yiyang Xu ◽  
Dianbo Long ◽  
Hong Sun ◽  
Hongyi Li ◽  
...  

Abstract Objectives Aberrations in exosomal circular RNA (circRNA) expression have been identified in various human diseases. In this study, we investigated whether exosomal circRNAs could act as competing endogenous RNAs (ceRNAs) to regulate the pathological process of osteoarthritis (OA). This study aimed to elucidate the specific MSC-derived exosomal circRNAs responsible for MSC-mediated chondrogenic differentiation using human bone marrow-derived MSCs (hMSCs) and a destabilization of the medial meniscus (DMM) mouse model of OA. Methods Exosomal circRNA deep sequencing was performed to evaluate the expression of circRNAs in human bone marrow-derived MSCs (hMSCs) induced to undergo chondrogenesis from day 0 to day 21. The regulatory and functional roles of exosomal circRNA_0001236 were examined on day 21 after inducing chondrogenesis in hMSCs and were validated in vitro and in vivo. The downstream target of circRNA_0001236 was also explored in vitro and in vivo using bioinformatics analyses. A luciferase reporter assay was used to evaluate the interaction between circRNA_0001236 and miR-3677-3p as well as the target gene sex-determining region Y-box 9 (Sox9). The function and mechanism of exosomal circRNA_0001236 in OA were explored in the DMM mouse model. Results Upregulation of exosomal circRNA_0001236 enhanced the expression of Col2a1 and Sox9 but inhibited that of MMP13 in hMSCs induced to undergo chondrogenesis. Moreover, circRNA_0001236 acted as an miR-3677-3p sponge and functioned in human chondrocytes via targeting miR-3677-3p and Sox9. Intra-articular injection of exosomal circRNA_0001236 attenuated OA in the DMM mouse model. Conclusions Our results reveal an important role for a novel exosomal circRNA_0001236 in chondrogenic differentiation. Overexpression of exosomal circRNA_0001236 promoted cartilage-specific gene and protein expression through the miR-3677-3p/Sox9 axis. Thus, circRNA_0001236-overexpressing exosomes may alleviate cartilage degradation, suppressing OA progression and enhancing cartilage repair. Our findings provide a potentially effective therapeutic strategy for treating OA.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4235-4235
Author(s):  
W. Clark Lambert ◽  
Santiago A. Centurion

Abstract We have previously shown that the primary cell cycle defect in the inherited, cancer-prone, bone marrow failure associated disease, Fanconi anemia (FA), is not in the G2 phase of the cell cycle, as had been thought for many years, but rather in the S phase. FA cells challenged with the DNA cross-linking agent, psoralen coupled with long wavelength, ultraviolet (UVA) radiation (PUVA), fail to slow their progression through the S phase of the subsequent cell cycle, as do normal cells. FA cells are extremely sensitive to the cytotoxic and clastogenic effects of DNA cross-linkers, such as PUVA, so much so that the diagnosis of FA is based on an assay, the “DEB test”, in which cells are examined for clastogenic and cytotoxic effects of diepoxybutane (DEB), a DNA cross-linking agent. More recently, we have shown that artificially slowing the cell cycle of FA cells exposed to PUVA by subsequent treatment with agents which slow their progression through S phase leads to markedly increased viability and reduced chromosome breakage in vitro. We now show that similar results can be obtained in vivo in patients with another DNA repair deficiency disease, xeroderma pigmentosum (XP), a recessively inherited disorder associated with defective repair of sunlight induced adducts in the DNA of sun-exposed tissues followed by development of numerous mutations causing large numbers of cancers in these same tissues. We treated two patients with XP, a light complected black male and a white female, both 14 years of age, in sun-exposed areas with 5-fluorouracil, an inhibitor of DNA synthesis, daily for three months. In contrast to normal patients, who only show clinical results if an inflammatory response is invoked, marked improvement in the clinical appearance of the skin was seen with no inflammation observed. This effect was confirmed histologically by examining epidermis adjacent to excised lesions in sun-exposed areas and further verified by computerized image analysis. Treatment with agents that slow progression through S phase, such as hydroxyurea, may similarly improve clinical outcomes in patients with FA or others who are developing bone marrow failure.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 641-641 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Katherine Rendahl ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of multiple myeloma (MM) patients results in the ectopic expression of the receptor tyrosine kinase, Fibroblast Growth Factor Receptor3 (FGFR3). Wild-type FGFR3 induces proliferative signals in myeloma cells and appears to be weakly transforming in a hematopoeitic mouse model. The subsequent acquisition of FGFR3 activating mutations in some MM is associated with disease progression and is strongly transforming in several experimental models. The clinical impact of t(4;14) translocations has been demonstrated in several retrospective studies each reporting a marked reduction in overall survival. We have previously shown that inhibition of activated FGFR3 causes morphologic differentiation followed by apoptosis of FGFR3 expressing MM cell lines, validating activated FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these poor-prognosis patients. CHIR258 is a small molecule kinase inhibitor that targets Class III–V RTKs and inhibits FGFR3 with an IC50 of 5 nM in an in vitro kinase assay. Potent anti-tumor and anti-angiogenic activity has been demonstrated in vitro and in vivo. We employed the IL-6 dependent cell line, B9 that has been engineered to express wild-type FGFR3 or active mutants of FGFR3 (Y373C, K650E, G384D and 807C), to screen CHIR258 for activity against FGFR3. CHIR258 differentially inhibited FGF-mediated growth of B9 expressing wild-type and mutant receptors found in MM, with an IC50 of 25 nM and 80 nM respectively as determined by MTT proliferation assay. Growth of these cells could be rescued by IL-6 demonstrating selectivity of CHIR258 for FGFR3. We then confirmed the activity of CHIR258 against FGFR3 expressing myeloma cells. CHIR258 inhibited the viability of FGFR3 expressing KMS11 (Y373C), KMS18 (G384D) and OPM-2 (K650E) cell lines with an IC50 of 100 nM, 250 nM and 80 nM, respectively. Importantly, inhibition with CHIR258 was still observed in the presence of IL-6, a potent growth factors for MM cells. U266 cells, which lack FGFR3 expression, displayed minimal growth inhibition demonstrating that at effective concentrations, CHIR258 exhibits minimal nonspecific cytotoxicity on MM cells. Further characterization of this finding demonstrated that inhibition of cell growth corresponded to G0/G1 cell cycle arrest and dose-dependent inhibition of downstream ERK phosphorylation. In responsive cell lines, CHIR258 induced apoptosis via caspase 3. In vitro combination analysis of CHIR258 and dexamethasone applied simultaneously to KMS11 cells indicated a synergistic interaction. In vivo studies demonstrated that CHIR258 induced tumor regression and inhibited growth of FGFR3 tumors in a plasmacytoma xenograft mouse model. Finally, CHIR258 produced cytotoxic responses in 4/5 primary myeloma samples derived from patients harboring a t(4;14) translocation. These data indicate that the small molecule inhibitor, CHIR258 potently inhibits FGFR3 and has activity against human MM cells setting the stage for a Phase I clinical trial of this compound in t(4;14) myeloma.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5256-5256
Author(s):  
Doug Cipkala ◽  
Kelly McQuown ◽  
Lindsay Hendey ◽  
Michael Boyer

Abstract The use of cytotoxic T-lymphocytes (CTL) has been attempted experimentally with various tumors to achieve disease control. Factors that may influence GVT include CTL cytotoxicity, ability to home to disease sites, and survival of T cells in the host. The objective of our study is to evaluate the GVL effects of human alloreactive CTL against ALL in a chimeric NOD/scid mouse model. CTL were generated from random blood donor PBMCs stimulated with the 697 human ALL cell line and supplemented with IL-2, -7, or -15. CTL were analyzed for in vitro cytotoxicity against 697 cells, phenotype, and in vitro migration on day 14. NOD/scid mice were injected with 107 697 ALL cells followed by 5x106 CTL. Mice were sacrificed seven days following CTL injection and residual leukemia was measured in the bone marrow and spleen via flow cytometry. The ratios of CD8/CD4 positive T cells at the time of injection were 46/21% for IL-2, 52/31% for IL-7, and 45/14% for IL-15 cultured CTL (n=13). Control mice not receiving CTL had a baseline leukemia burden of 2.01% and 0.15% in the bone marrow and spleen, respectively (n=15). Mice treated with IL-15 cultured CTL had a reduction in tumor burden to 0.2% (n=13, p=0.01) and 0.05% (n=13, p=0.01) in bone marrow and spleen, respectively. Those treated with IL-2 or IL-7 cultured CTL showed no significant difference in leukemia burden in either the bone marrow (IL-2 1.28%, Il-7 5.97%) or spleen (IL-2 0.4%, IL-7 0.33%). No residual CTL could be identified in the bone marrow or spleen at the time of sacrifice in any CTL group. CTL grown in each cytokine resulted in similar in vitro cytotoxicity at an effector:target ratio of 10:1 (IL-2 41.3%, IL-7 37.7%, IL-15 45.3%, n=12–15, p>0.05 for all groups) and had statistically similar intracellular perforin and granzyme-B expression. In vitro CTL migration to a human mesenchymal stem cell line was greatest with IL-15 CTL (30.5%, n=4), followed by IL-7 CTL (18.9%, n=4), and least in IL-2 CTL (17.9%, n=4), though the differences were not significant. In vitro CTL migration was analyzed to an SDF-1α gradient as CXCR4/SDF-1α interactions are necessary for hematopoietic progenitor cell homing to the bone marrow. IL-15 cultured CTL showed the highest migration (48.8%, n=8) as compared to IL-2 (21.7%, n=6, p=0.048) or IL-7 CTL (35.9%, n=8, p>0.05). However, surface expression of CXCR4 measured by flow cytometry was significantly higher in IL-7 CTL (89.4%, n=9) compared to IL-2 CTL (52.2%, n=9, p<0.001) and IL-15 CTL (65.4%, n=10, p=0.002). Experiments are currently underway to further evaluate the role of CXCR4/SDF-1α in GVL. Preliminary in vivo experiments do not suggest any significant differences in CTL engraftment when evaluated at 24 hours post injection. Expression of the anti-apoptotic bcl-2 protein was greatest on IL-7 (MFI=5295, n=13) and IL-15 (MFI=4865, n=14) when compared to IL-2 CTL (MFI=3530, n=13, p=0.02 vs. IL-7, p=0.05 vs. IL-15), suggesting an increased in vivo survival ability. We hypothesize that IL-15 cultured CTL have greater GVL effects due to either higher in vivo survival, greater bone marrow homing efficiency, or both. Future experiments are planned to evaluate in vivo administration of IL-2 to enhance CTL survival in the host. In conclusion, IL-15 cultured CTL had significantly greater in vivo GVL effects compared to IL-2 and IL-7 CTL in the NOD/scid mouse model. This model can be utilized to evaluate the mechanism of T cell mediated GVL against ALL and potentially other human malignancies.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3133-3133 ◽  
Author(s):  
Marco Montillo ◽  
Sara Miqueleiz ◽  
Alessandra Tedeschi ◽  
Francesca Ricci ◽  
Eleonora Vismara ◽  
...  

Abstract Fludarabine (F) in combination with cyclophosphamide (C) showed a relevant advantage over single-agent F in pts with relapsed CLL. Although minimal residual disease (MRD) remains detectable in many pts achieving CR, the combination of F and C seems to reduce MRD more efficiently. Still, pts in CR eventually relapse and require treatment, demonstrating the need for improved treatments able to further reduce or eliminate MRD and induce “better quality” and thus more durable responses. Alemtuzumab (CAM), anti-CD52 monoclonal antibody, acts synergistically with F in vitro and appears to have synergistic activity in vivo. Additionally, CAM is highly effective at clearing disease from bone marrow, the usual site of residual disease following purine analogue-based treatment. Therefore, we designed a phase II study to determine feasibility and efficacy, overall response rate (ORR)-duration of response-ability at clearing MRD, of a 4-weekly combination regimen consisting of F, C, and CAM (FCC). The study population is represented by pts with B-CLL with relapsed or refractory disease after at least one line of treatment. Subcutaneous route of administration of CAM has been adopted in this trial. MRD was measured by 4-color flow cytometry in the bone marrow. The FCC regimen consisted of F 40 mg/m2/d os (d 1–3), C 250 mg/m2/d os (d 1–3) and CAM 10 mg sc (d 1–3). This combination was repeated on d 29 for up to 6 cycles. The dose of CAM was increased after the first cohort of 10 treated pts from 10 mg to 20 mg sc. Currently, 25 pts have been enrolled in this trial. Median age was 57 years (range 42–79), 15/25 (60%) were male, 23/25 (92%) were in Binet stage B or C, median number of prior treatment regimens was 2 (range 1–4). In six (24%) pts 17p deletion was detected. IgVH unmutated was observed in 17 (68%) pts. At the moment of writing 19 pts are eligible for evaluation of toxicity and response. The ORR was 79%, with 7 (37%) pts achieving CR, 7 (37%) pts a PR, 1 (5%) pt a PRn. Three pts had SD, while 1 showed progression of the disease. MRD negativity was achieved in the bone marrow of 4/15 (27%) pts. Grade III-IV neutropenia episodes were observed in 43% of the administered courses while grade III-IV thrombocytopenia episodes were detected only in 8% of cycles. Four major infections were recorded: two sustained by Mycobacterium tuberculosis (1 cutis, 1 lung), one by Nocardia (lung) and one by E. coli (sepsis). The patient with pneumonia due to M. tuberculosis died because of respiratory failure. CMV reactivation occurred in 6 pts: no CMV disease was recorded. After a median follow up of 10 m (range 1–22) 73% of responding pts did not progressed. In conclusion, results from the interim analysis of this new, 4-weekly dosing FCC regimen suggest that combination therapy with F, C and CAM is feasible, safe, and effective in treating pts with relapsed and refractory CLL, even in those patients with inherent poor prognostic factors and who had received.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 535-535 ◽  
Author(s):  
Thomas O’Hare ◽  
Christopher A. Eide ◽  
Jeffrey W. Tyner ◽  
Amie S. Corbin ◽  
Matthew J. Wong ◽  
...  

Abstract Overview: Bcr-AblT315I is detected in the majority of CML patients who relapse after dasatinib- or nilotinib-based second-line Bcr-Abl kinase inhibitor therapy. SGX70393, an azapyridine-based Abl kinase inhibitor, is effective against Bcr-Abl and Bcr-AblT315I at low nanomolar concentrations in vitro and in cell lines. Here, we comprehensively profiled SGX70393 against native and mutant Bcr-Abl in vitro and in vivo. We also used a cell-based mutagenesis screen to evaluate the resistance profile of SGX70393 alone and in combination with imatinib, nilotinib, or dasatinib. Methods: We assessed colony formation in the presence of SGX70393 by murine bone marrow infected with retroviruses for expression of Bcr-Abl, Bcr-AblT315I, or a variety of other mutants. Toxicity was tested in clonogenic assays of normal bone marrow. SGX70393 effects on cellular tyrosine phosphorylation were measured by immunoblot and FACS in primary Bcr-AblT315I cells isolated from patients with CML or Ph+ B-ALL. In vivo activity was evaluated in a xenograft model using Ba/F3 cells expressing Bcr-AblT315I. Lastly, the resistance profile of SGX70393 was evaluated alone and in dual combinations with imatinib, nilotinib, or dasatinib in a cell-based mutagenesis assay. Results: Colony formation by murine bone marrow cells expressing Bcr-AblT315I (IC50: 180 nM) was reduced by SGX70393 in a dose dependent manner, while no toxicity was observed in colony forming assays of normal human or murine mononuclear cells at concentrations up to 2 μM. Ex vivo exposure of human Bcr-AblT315I mononuclear cells to SGX70393 decreased CrkL phosphorylation, while imatinib, nilotinib, or dasatinib had no effect. SGX70393 inhibited Bcr-AblT315I-driven tumor growth in mice and this was correlated with reduced levels of pCrkL in tumor tissue, while imatinib was ineffective. A cell-based mutagenesis screen revealed a profile of resistant clones confined to four p-loop residues and position 317. SGX70393 in combination with imatinib contracted the spectrum of resistant mutations relative to either single agent, though outgrowth could not be completely suppressed. Combining SGX70393 with low concentrations of nilotinib or dasatinib narrowed the resistance profile still further (residues 248 and 255 for nilotinib; 317 for dasatinib) and, with clinically achievable doses of either second drug, completely abrogated emergence of resistant subclones. Conclusions: SGX70393, a potent inhibitor of Bcr-AblT315I, exhibits a resistance profile centered around the p-loop and residue 317 of Bcr-Abl. Remarkably, in combination with nilotinib or dasatinib, outgrowth of resistant clones is completely suppressed. Single-agent therapy with an effective T315I inhibitor may provide a viable option for patients who relapse with Bcr-AblT315I. However, as a broader spectrum of mutations accounts for imatinib resistance, patients with acquired dasatinib or nilotinib resistance may continue to harbor residual mutant clones other than T315I. Thus, the full clinical potential of SGX70393 may be realized in combinations with a second Abl kinase inhibitor. Our findings provide the first demonstration that Abl kinase inhibitor combinations that include a T315I-targeted component such as SGX70393 have the potential to pre-empt Bcr-Abl-dependent resistance.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3796-3796
Author(s):  
Christelle Gasser ◽  
Rebekka Grundler ◽  
Laurent Brault ◽  
Alec Bullock ◽  
Tobias Dechow ◽  
...  

Abstract Previous work has shown that FLT3-ITD mediated leukemogenesis is associated with increased expression of PIM1 and PIM2 serine/threonine kinases. Here we show that retroviral expression of FLT3-ITD could not compensate impaired clonogenic in vitro growth of PIM1−/− bone marrow cells. Induction of a lethal myelo- and lymphoproliferative disorder by FLT3-ITD in vivo was independent of PIM2, but rather unexpectedly, lethally irradiated recipients could not be reconstituted with FLT3-ITD expressing bone marrow cells lacking PIM1. Transplants of CSFE-labeled PIM1−/− cells revealed an impaired homing capacity to bone marrow and spleen. Expression of lower surface CXCR4 levels (while maintaining normal total CXCR4 levels) in PIM1−/− bone marrow cells was associated with significantly reduced migration towards a CXCL12 gradient and impaired CXCL12-mediated intracellular Ca2+ release. Using siRNA-mediated knockdown, a small molecule PIM inhibitor, expression of a dominant-negative acting PIM1 mutant or re-expression of PIM1 in knockout cells, we observed that PIM1 activity was critical for CXCR4 surface expression. In vitro kinase assays and masspectrometric analysis further revealed that PIM1 directly phosphorylated serine 339 located in the CXCR4 intracellular domain known to be essential for proper receptor recycling. Interestingly, in leukemic blasts from acute myeloid leukemia (AML) patients, we found an association of increased PIM1 expression and high-level of surface CXCR4. In addition, treatment of the cells with a small molecule PIM inhibitor resulted in decreased surface CXCR4 expression in some patients. Our work suggests that PIM1 exerts its oncogenic activity not only by supporting proliferation and survival but also by regulation of cell homing and migration through direct modification of the CXCL12/CXCR4 axis. As CXCR4 is a key mediator of cancer stem cell homing and metastasis, targeting of PIM1 may offer new therapeutic avenues against tumor progression and relapse.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3347-3347
Author(s):  
Sylvia Takacova ◽  
Jiri Bartek ◽  
Lucie Piterkova ◽  
Robert K. Slany ◽  
Vladimir Divoky

Abstract Mixed Lineage Leukemia (MLL) mutations identify a unique group of acute leukemias with distinct biological and clinical features. Although the role of MLL in leukemogenesis has been extensively studied, a precise mechanism regarding the leukemogenic potential of MLL mutations is not known. We generated a switchable MLL-ENL-ERtm mouse model, in which the MLL-ENL oncogene has been introduced by homologous recombination and is controlled by the endogenous MLL promoter, thus, expressed at physiological levels. Due to fusion with the estrogen receptor ligand binding domain (ERtm), the MLL-ENL-ERtm protein activity is dependent on continuous provision of tamoxifen or 4-hydroxytamoxifen. The MLL-ENL-ERtm mice have developed a myeloproliferative disorder (MPD) characterized by persistent mature neutrophilia after 484,5 +/− 75,68 days of latency on a tamoxifen diet, in association with high white cell counts in peripheral blood, splenomegaly and occasionally with anemia. Blood smears showed large numbers of mature myeloid elements consisting of 40–80% neutrophils (non-segmented forms in abundance), admixed with immature myeloid elements, 3–11% monocytes and 2–6% myeloblasts. The phenotype of MPD also involved myelomonocytic proliferation with 35% immature monocytic cells in one animal and severe anemia with increased numbers of immature erythroid cells in peripheral blood in another animal. Hematoxylin- and eosin-stained sections of the bone marrow from MLL-ENL-ERtm mice revealed expansion of myeloid cell population with no signs of progressive dysplasia. We observed massive infiltration of myeloid cells (positive for myeloperoxidase) into spleen with various degree of loss of normal splenic architecture depending on disease progression. FACS profiles of both bone marrow and spleen cells showed a typical pattern of granulocyte/macrophage/monocyte surface marker expression (CD34-CD43+Mac- 1+Gr-1+CD16/32+). In vitro evaluation of hematopoetic progenitors derived from bone marrow of leukemic mice at the terminal stage of the disease revealed decreased numbers of BFU-Es and increased numbers of CFU-GMs and CFU-Gs compared to matched controls. These results correlated with the expansion of the myelomonocytic and reduction of the erythroid compartment observed in the bone marrow of these animals. The average size (cellularity) of the mutant myeloid colonies was much smaller than the colonies derived from the wild-type controls, which could be caused by a partial block of terminal differentiation of myeloid progenitors in vitro. In vivo, MLL-ENL leads to expansion of differentiated myeloid cells in our model. High penetrance and long latency of leukemia in our model permits the study of early leukemia development. Our model revealed that MLL-ENL - induced myeloproliferation occurs as early as twelve weeks after MLL-ENL-ERtm activation in the bone marrow and infiltrates the spleen with a consequent decrease in lymphoid B220+CD19+IgM+ cells. Using the TUNEL assay on bone marrow sections, we observed induction of apoptosis in the highly proliferative bone marrow compartment compared to matched controls. These results suggest activation of a potential tumor suppressor mechanism by MLL-ENL in early stages of leukemia. We are currently investigating potential tumor suppressor pathways that might be involved in MLL-ENL - induced apoptosis in preleukemia.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 966-966
Author(s):  
Natalya Lyubynska ◽  
Jennifer Lauchle ◽  
Kevin Shannon ◽  
Benjamin S. Braun

Abstract Abstract 966 Mutations that deregulate cellular signaling are a hallmark of myeloproliferative neoplasms (MPNs), and pharmacologic inhibitors of MPN-associated proteins have redefined therapy for some MPNs. However, this strategy cannot yet be applied to juvenile- and chronic myelomonocytic leukemias (JMML and CMML). These diseases are characterized by aberrant N-Ras, K-Ras, Cbl, and SHP-2 proteins that are not easily targeted by drugs. An attractive alternative approach is to inhibit downstream effector pathways, which include the Raf/MEK/ERK, phosphoinositide-3-OH kinase (PI3K)/Akt, and Ral-GDS/Ral-A cascades. However, it is not known which of these pathways are crucial for the aberrant growth and survival of JMML and CMML cells and might therefore provide the best targets for therapy. To address these questions, we developed an accurate mouse model of JMML and CMML by expressing a conditional “knock-in” KrasLSL-G12D oncogene in bone marrow. We administered PD0325901, a potent and selective MEK inhibitor, to Mx1-Cre, KrasG12D mutant mice to test the hypothesis that the Raf→MEK→ERK cascade is necessary for MPN initiated by KrasG12D expression. Oral administration of PD0325901 5 mg/kg caused deep and durable MEK inhibition in primary bone marrow progenitors. Mx1-Cre, KrasG12D mice with established MPN and wild-type (WT) littermates were randomly assigned to receive PD0325901 5 mg/kg/day or a control vehicle. Treated Mx1-Cre, KrasG12D mice demonstrated rapid correction of leukocytosis and anemia, and reduction in splenomegaly. Treatment was also associated with dramatic improvement in the survival of Mx1-Cre, KrasG12D mice (8.1 vs. 2.0 weeks after entry, p=0.003). Two of three Mx1-Cre, KrasG12D mice that were treated for 12 weeks ultimately died with KrasG12D T-lineage leukemia/lymphoma, but none succumbed with progressive MPN. Flow cytometry of bone marrow and peripheral populations showed that PD0325901 reversed the granulocyte/monocyte progenitor bias and ineffective erythropoiesis in KrasG12D mice. However, PD0325901 did not eliminate the rearranged mutant Kras allele in myeloid progenitors, and these cells remained hypersensitive to GM-CSF in methylcellulose cultures. Therefore, PD0325901 did not eliminate Kras mutant cells, but rather modified their behavior in vivo so as to restore a normal output of the hematopoietic system. To further address the biologic effects of PD0325901 on growth of primary progenitor cells in vitro, we examined colony growth over a range of GM-CSF concentrations. Importantly, whereas in vitro exposure to PD0325901 did not selectively abrogate colony growth from bone marrow of naïve Mx1-Cre, KrasG12D mice in the presence of saturating doses of GM-CSF, a low concentration of PD0325901 eliminated the growth of cytokine-independent progenitor colonies. Even more strikingly, this also restored a normal GM-CSF dose response curve in clonogenic progenitors, eliminating the hypersensitive growth pattern that is a hallmark of MPN. Finally, even at saturating doses of GM-CSF, a low concentration of PD0325901 was sufficient to normalize the numbers and types of cells within the colonies. Together, these data show that a low concentration of PD0325901 is sufficient to impart a normal program of proliferation and differentiation in KrasG12D myeloid progenitors. These findings are highly consistent with the in vivo data. Collectively, our data suggest that aberrant MEK activation mediates most aspects of the MPN phenotype in the progenitor compartment and support the development of clinical trials to evaluate MEK inhibitors in patients with JMML and CMML. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document