scholarly journals Targeted Depletion of Amino Acids As a Novel Therapy for Acute Leukemia and Other Cancers: Mechanisms and Countermechanisms

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4716-4716 ◽  
Author(s):  
Aysenur Esen ◽  
Anwar A Khan ◽  
Jason Chan ◽  
Nadim Mahmud ◽  
John G. Quigley

Abstract Introduction: Metabolic reprogramming by cancer cells to allow proliferation and survival suggests targeting of relatively cancer cell-specific metabolic processes as a potential cancer therapy. The amino acid (aa) glutamine (GLN) functions as an exchange factor to facilitate cell import of essential amino acids (EAA), which positively regulate translation by the mTORC1 pathway (via phosphorylation of S70K and 4EBP1), allowing proliferation. Most cancer cells also rely on GLN, rather than glucose for citric acid cycle (TCA) anaplerosis, and as a source of energy, anti-oxidants and components for protein synthesis. L-asparaginase (L-Ase), an enzyme that breaks down extracellular asparagine (ASN, the least prevalent intracellular aa), is used in the treatment of ALL. L-Ase is also glutaminolytic, resulting in GLN depletion and apoptosis that is suppressed by ASN repletion, which modulates the cell stress responses (ISR, upregulatingATF4, CHOP, aa transporters, and asparagine synthetase (ASNS)). Thus, (i) ASN is a critical signal preventing cell death from GLN depletion; (ii) ASN repletion (via ASNS) may be the important function of GLN within cancer cells, and (iii) mechanisms that deplete bothkey aa may be synergistic in implementing cancer cell death Apart from non-EAA synthesis and aa uptake (#1 in Fig. 1A), there are two major pathways of cellular aa repletion: (i) autophagy, a process whereby damaged proteins are delivered to the lysosome for degradation (#2), and (ii) the ubiquitin-proteasome system (UPS, #3), which also degrades damaged or misfolded cell proteins, allowing aa recycling. Notably, UPS inhibition significantly decreases ASN (andcystine) levels. The aim of our studies is to explore mechanisms of depleting intracellular GLN and ASN levels in cancer cells, firstinvestigating the potential synergistic effects of combining L-Ase, with Chloroquine (CQ, autophagy inhibition) and Bortezomib (BTZ, proteasome inhibition), and then analyzing cancer cell counter mechanisms. Results: We performed kill-curves with individual drugs, and then combinations of L-ase, CQ and BTZ in REH (ALL) cells. Notably, inhibitory effects on aarepletion pathways, as determined by western blot analysis of cell lysates at 12h (Fig. 1B), were seen with a combination of significantly lowered doses of each drug [BTZ 2nM (40% of LD50); L-Ase 0.2IU (15%); CQ 100mM (50%)]. The mTORC1 pathway is especially susceptible to inhibition by drug combination-mediated aa depletion (decreased phosphorylation of 4EBP1 and S6K1; compare lanes 2-4 & 5-8), while autophagy (monitored by increasing levels of LC3-II) is also inhibited. Cell viability was assessed after 48h. Although the low doses of each drug used has a minimal impact on viability (range 75-130% of control), the combination above (2nM;0.2IU;100mM) results in synergistic cell death [55% (n = 1)]. We will examine further the effects of this drug combination on normal CD34+ cells, prior to studies of efficacy inxeno-transplant models. Most tumors are metabolically flexible, e.g., they can use glucose if deprived of GLN to replenish TCA, and, via TCA intermediates, increase GLN levels, and thereby ASN, via pyruvate carboxylase (PC), transaminases (GOT1, 2), glutaminesynthetases(GDH, GS) and ASNS (see Fig. 1 pathways). Thus, we interrogated, byqPCR, potentially relevant pathways that may be used to evade glutamine and asparagine depletion-induced apoptosis (Fig. 1C). Of 12 genes tested, GLN deprivation significantlyupregulatesGLS1, GOT1, and ASNS to increase ASN levels, while the ISR is activated (CHOP), and SLC7A11, a cysteine importer upregulated in tumors (for glutathione production) is also significantly upregulated. Preliminary studies of REH and A549 (lung cancer) cells suggest a common theme in metabolic responses to GLN depletion in diverse cancer cells is ASN synthesis through GOT1 and ASNS upregulation, and likely ROS production throughcystineuptake. Conclusions: Commonly, inhibition of one metabolic pathway results in upregulation of another. Our studies indicate that combination therapy, using low doses of available, well-studied drugs depletes keyaa ASN and GLN, and prevents their repletion, causing cancer cell death. In addition, our studies of the cellular responses to GLN depletion alone indicate additional targets that should be considered to prevent ASN-mediated inhibition of cell death in diverse cancer types. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

2019 ◽  
Vol 295 (5) ◽  
pp. 1350-1365 ◽  
Author(s):  
James H. Joly ◽  
Alireza Delfarah ◽  
Philip S. Phung ◽  
Sydney Parrish ◽  
Nicholas A. Graham

Metabolic reprogramming in cancer cells can increase their dependence on metabolic substrates such as glucose. As such, the vulnerability of cancer cells to glucose deprivation creates an attractive opportunity for therapeutic intervention. Because it is not possible to starve tumors of glucose in vivo, here we sought to identify the mechanisms in glucose deprivation–induced cancer cell death and then designed inhibitor combinations to mimic glucose deprivation–induced cell death. Using metabolomic profiling, we found that cells undergoing glucose deprivation–induced cell death exhibited dramatic accumulation of intracellular l-cysteine and its oxidized dimer, l-cystine, and depletion of the antioxidant GSH. Building on this observation, we show that glucose deprivation–induced cell death is driven not by the lack of glucose, but rather by l-cystine import. Following glucose deprivation, the import of l-cystine and its subsequent reduction to l-cysteine depleted both NADPH and GSH pools, thereby allowing toxic accumulation of reactive oxygen species. Consistent with this model, we found that the glutamate/cystine antiporter (xCT) is required for increased sensitivity to glucose deprivation. We searched for glycolytic enzymes whose expression is essential for the survival of cancer cells with high xCT expression and identified glucose transporter type 1 (GLUT1). Testing a drug combination that co-targeted GLUT1 and GSH synthesis, we found that this combination induces synthetic lethal cell death in high xCT-expressing cell lines susceptible to glucose deprivation. These results indicate that co-targeting GLUT1 and GSH synthesis may offer a potential therapeutic approach for targeting tumors dependent on glucose for survival.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Roberta Palorini ◽  
Tiziana Simonetto ◽  
Claudia Cirulli ◽  
Ferdinando Chiaradonna

Cancer cells generally rely mostly on glycolysis rather than oxidative phosphorylation (OXPHOS) for ATP production. In fact, they are particularly sensitive to glycolysis inhibition and glucose depletion. On the other hand mitochondrial dysfunctions, involved in the onset of the Warburg effect, are sometimes also associated with the resistance to apoptosis that characterizes cancer cells. Therefore, combined treatments targeting both glycolysis and mitochondria function, exploiting peculiar tumor features, might be lethal for cancer cells. In this study, we show that glucose deprivation and mitochondrial Complex I inhibitors synergize in inducing cancer cell death. In particular, our results reveal that low doses of Complex I inhibitors, ineffective on immortalized cells and in high glucose growth, become specifically cytotoxic on cancer cells deprived of glucose. Importantly, the cytotoxic effect of the inhibitors on cancer cells is strongly enhanced by forskolin, a PKA pathway activator, that we have previously shown to stimulate OXPHOS. Taken together, we demonstrate that induction in cancer cells of a switch from a glycolytic to a more respirative metabolism, obtained by glucose depletion or mitochondrial activity stimulation, strongly increases their sensitivity to low doses of mitochondrial Complex I inhibitors. Our findings might be a valuable approach to eradicate cancer cells.


2021 ◽  
Author(s):  
Wooram Park ◽  
Seok-Jo Kim ◽  
Paul Cheresh ◽  
Jeanho Yun ◽  
Byeongdu Lee ◽  
...  

Mitochondria are crucial regulators of the intrinsic pathway of cancer cell death. The high sensitivity of cancer cells to mitochondrial dysfunction offers opportunities for emerging targets in cancer therapy. Herein,...


2016 ◽  
Vol 7 (9) ◽  
pp. 5995-6005 ◽  
Author(s):  
Jingye Zhang ◽  
Zining Liu ◽  
Peng Lian ◽  
Jun Qian ◽  
Xinwei Li ◽  
...  

A theranostic probe is designed that specifically illuminates and photoablates cancer cells by sensing pH changes in the lysosomes and mitochondria.


MedChemComm ◽  
2016 ◽  
Vol 7 (6) ◽  
pp. 1197-1203 ◽  
Author(s):  
Ravindra M. Kumbhare ◽  
Tulshiram L. Dadmal ◽  
Dinesh Kumar ◽  
M. Janaki Ramaiah ◽  
Anudeep Kota ◽  
...  

Fluorinated thiazolidinols cause A549 lung cancer cell death by acting via PI3K/Akt/mTOR and MEK/ERK pathways.


2016 ◽  
Vol 45 (22) ◽  
pp. 9345-9353 ◽  
Author(s):  
Asfa Ali ◽  
Mohini Kamra ◽  
Arunoday Bhan ◽  
Subhrangsu S. Mandal ◽  
Santanu Bhattacharya

Distamycin like moieties conjugated with core Fe(iii) and Co(ii) based salens were synthesized and studied. The metal complexes showed better and differential activity toward cancer cell death.


RSC Advances ◽  
2016 ◽  
Vol 6 (113) ◽  
pp. 112667-112676 ◽  
Author(s):  
Biswadip Banerji ◽  
Moumita Chatterjee ◽  
Chandraday Prodhan ◽  
Keya Chaudhuri

Tripeptide self assemblies in cell growth medium induce apoptosis and promoting cancer cell death at submicromolar concentration.


2021 ◽  
Vol 22 (2) ◽  
pp. 622
Author(s):  
Mikhail G. Akimov ◽  
Alina M. Gamisonia ◽  
Polina V. Dudina ◽  
Natalia M. Gretskaya ◽  
Anastasia A. Gaydaryova ◽  
...  

GPR55 is a GPCR of the non-CB1/CB2 cannabinoid receptor family, which is activated by lysophosphatidylinositol (LPI) and stimulates the proliferation of cancer cells. Anandamide, a bioactive lipid endocannabinoid, acts as a biased agonist of GPR55 and induces cancer cell death, but is unstable and psychoactive. We hypothesized that other endocannabinoids and structurally similar compounds, which are more hydrolytically stable, could also induce cancer cell death via GPR55 activation. We chemically synthesized and tested a set of fatty acid amides and esters for cell death induction via GPR55 activation. The most active compounds appeared to be N-acyl dopamines, especially N-docosahexaenoyl dopamine (DHA-DA). Using a panel of cancer cell lines and a set of receptor and intracellular signal transduction machinery inhibitors together with cell viability, Ca2+, NO, ROS (reactive oxygen species) and gene expression measurement, we showed for the first time that for these compounds, the mechanism of cell death induction differed from that published for anandamide and included neuronal nitric oxide synthase (nNOS) overstimulation with concomitant oxidative stress induction. The combination of DHA-DA with LPI, which normally stimulates cancer proliferation and is increased in cancer setting, had an increased cytotoxicity for the cancer cells indicating a therapeutic potential.


2020 ◽  
Vol 295 (5) ◽  
pp. 1350-1365
Author(s):  
James H. Joly ◽  
Alireza Delfarah ◽  
Philip S. Phung ◽  
Sydney Parrish ◽  
Nicholas A. Graham

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1101
Author(s):  
Mei-Chun Chen ◽  
Li-Lin Hsu ◽  
Sheng-Fan Wang ◽  
Yi-Ling Pan ◽  
Jeng-Fan Lo ◽  
...  

Cancer cells have the metabolic flexibility to adapt to heterogeneous tumor microenvironments. The integrated stress response (ISR) regulates the cellular adaptation response during nutrient stress. However, the issue of how the ISR regulates metabolic flexibility is still poorly understood. In this study, we activated the ISR using salubrinal in cancer cells and found that salubrinal repressed cell growth, colony formation, and migration but did not induce cell death in a glucose-containing condition. Under a glucose-deprivation condition, salubrinal induced cell death and increased the levels of mitochondrial reactive oxygen species (ROS). We found that these effects of salubrinal and glucose deprivation were associated with the upregulation of xCT (SLC7A11), which functions as an antiporter of cystine and glutamate and maintains the level of glutathione to maintain redox homeostasis. The upregulation of xCT did not protect cells from oxidative stress-mediated cell death but promoted it during glucose deprivation. In addition, the supplementation of ROS scavenger N-acetylcysteine and the maintenance of intracellular levels of amino acids via sulfasalazine (xCT inhibitor) or dimethyl-α-ketoglutarate decreased the levels of mitochondrial ROS and protected cells from death. Our results suggested that salubrinal enhances cancer cell death during glucose deprivation through the upregulation of xCT and mitochondrial oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document