scholarly journals Inhibition of human monocyte adhesion by interleukin-4

Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2739-2745 ◽  
Author(s):  
MJ Elliott ◽  
JR Gamble ◽  
LS Park ◽  
MA Vadas ◽  
AF Lopez

Abstract The adhesion of monocytes to vascular surfaces is central to inflammation and atherogenesis; however, very little is known about regulatory factors that can prevent these processes. Here we report the inhibition of human monocyte adhesion to human endothelial layers and plastic by interleukin-4 (IL-4), a T-cell-derived glycoprotein with pleiotropic activities. The inhibitory effects of IL-4 were seen with basal and cytokine-stimulated monocyte adhesion, were apparent at low concentration, and were abolished by inactivating IL-4. No direct toxic effect of IL-4 on monocytes was detected. Inhibition of adhesion was accompanied by small increases in monocyte surface expression of the leukocyte-functional antigen group of adhesion structures, suggesting that absolute levels of expression may be less important than the functional status of such molecules in the regulation of monocyte adhesion. In addition, inhibition by IL-4 of cytokine-stimulated monocyte adhesion was not associated with changes in the surface expression of cytokine receptors. These results suggest a role for IL-4 in the regulation of monocyte adhesion, and may provide for a common mechanism for the inhibitory effects of IL-4 on monocyte function.

Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2739-2745
Author(s):  
MJ Elliott ◽  
JR Gamble ◽  
LS Park ◽  
MA Vadas ◽  
AF Lopez

The adhesion of monocytes to vascular surfaces is central to inflammation and atherogenesis; however, very little is known about regulatory factors that can prevent these processes. Here we report the inhibition of human monocyte adhesion to human endothelial layers and plastic by interleukin-4 (IL-4), a T-cell-derived glycoprotein with pleiotropic activities. The inhibitory effects of IL-4 were seen with basal and cytokine-stimulated monocyte adhesion, were apparent at low concentration, and were abolished by inactivating IL-4. No direct toxic effect of IL-4 on monocytes was detected. Inhibition of adhesion was accompanied by small increases in monocyte surface expression of the leukocyte-functional antigen group of adhesion structures, suggesting that absolute levels of expression may be less important than the functional status of such molecules in the regulation of monocyte adhesion. In addition, inhibition by IL-4 of cytokine-stimulated monocyte adhesion was not associated with changes in the surface expression of cytokine receptors. These results suggest a role for IL-4 in the regulation of monocyte adhesion, and may provide for a common mechanism for the inhibitory effects of IL-4 on monocyte function.


1994 ◽  
Vol 24 (2) ◽  
pp. 480-484
Author(s):  
Joelle Taieb ◽  
Marie-Thérese Auffredou ◽  
Aimé Vazquez

1999 ◽  
Vol 81 (04) ◽  
pp. 594-560 ◽  
Author(s):  
Florence Ganné ◽  
Marc Vasse ◽  
Jean-Louis Beaudeu ◽  
Jacqueline Peynet ◽  
Arnaud François ◽  
...  

SummaryMonocyte-derived foam cells figure prominently in rupture-prone regions of atherosclerotic plaque. As urokinase/urokinase-receptor (u-PA/u-PAR) is the trigger of a proteolytic cascade responsible for ECM degradation, we have examined the effect of atherogenic lipoproteins on monocyte surface expression of u-PAR and u-PA. Peripheral blood monocytes, isolated from 10 healthy volunteers, were incubated with 10 to 200 µg/ml of native or oxidised (ox-) atherogenous lipoproteins for 18 h and cell surface expression of u-PA and u-PAR was analysed by flow cytometry. Both LDL and Lp(a) induced a dose-dependent increase in u-PA (1.6-fold increase with 200 μg/ml of ox-LDL) and u-PAR [1.7-fold increase with 200 μg/ml of ox-Lp(a)]. There is a great variability of the response among the donors, some of them remaining non-responders (absence of increase of u-PA or u-PAR) even at 200 μg/ml of lipoproteins. In positive responders, enhanced u-PA/u-PAR is associated with a significant increase of plasmin generation (1.9-fold increase with 200 μg/ml of ox-LDL), as determined by an amidolytic assay. Furthermore, monocyte adhesion to vitronectin and fibrinogen was significantly enhanced by the lipoproteins [respectively 2-fold and 1.7-fold increase with 200 μg/ml of ox-Lp(a)], due to the increase of u-PAR and ICAM-1, which are receptors for vitronectin and fibrinogen. These data suggest that atherogenous lipoproteins could contribute to the development of atheromatous plaque by increasing monocyte adhesion and trigger plaque weakening by inducing ECM degradation.


Circulation ◽  
1997 ◽  
Vol 95 (3) ◽  
pp. 662-668 ◽  
Author(s):  
Mark R. Adams ◽  
Wendy Jessup ◽  
Deborah Hailstones ◽  
David S. Celermajer

2021 ◽  
Vol 22 (10) ◽  
pp. 5148
Author(s):  
Karin Enderle ◽  
Martin Dinkel ◽  
Eva-Maria Spath ◽  
Benjamin Schmid ◽  
Sebastian Zundler ◽  
...  

Intraepithelial lymphocytes (IEL) are widely distributed within the small intestinal epithelial cell (IEC) layer and represent one of the largest T cell pools of the body. While implicated in the pathogenesis of intestinal inflammation, detailed insight especially into the cellular cross-talk between IELs and IECs is largely missing in part due to lacking methodologies to monitor this interaction. To overcome this shortcoming, we employed and validated a murine IEL-IEC (organoids) ex vivo co-culture model system. Using livecell imaging we established a protocol to visualize and quantify the spatio-temporal migratory behavior of IELs within organoids over time. Applying this methodology, we found that IELs lacking CD103 (i.e., integrin alpha E, ITGAE) surface expression usually functioning as a retention receptor for IELs through binding to E-cadherin (CD324) expressing IECs displayed aberrant mobility and migration patterns. Specifically, CD103 deficiency affected the ability of IELs to migrate and reduced their speed during crawling within organoids. In summary, we report a new technology to monitor and quantitatively assess especially migratory characteristics of IELs communicating with IEC ex vivo. This approach is hence readily applicable to study the effects of targeted therapeutic interventions on IEL-IEC cross-talk.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Om Makwana ◽  
Gina A. Smith ◽  
Hannah E. Flockton ◽  
Gary P. Watters ◽  
Frazer Lowe ◽  
...  

AbstractAtherosclerosis is a complex process involving progressive pathological events, including monocyte adhesion to the luminal endothelial surface. We have developed a functional in vitro adhesion assay using BioFlux microfluidic technology to investigate THP-1 (human acute monocytic leukaemia cell) monocyte adhesion to human aortic endothelial cells (HAECs). The effect of whole smoke conditioned media (WSCM) generated from University of Kentucky reference cigarette 3R4F, electronic cigarette vapour conditioned media (eVCM) from an electronic nicotine delivery system (ENDS) product (Vype ePen) and nicotine on monocyte adhesion to HAECs was evaluated. Endothelial monolayers were grown in microfluidic channels and exposed to 0–1500 ng/mL nicotine or nicotine equivalence of WSCM or eVCM for 24 h. Activated THP-1 cells were perfused through the channels and a perfusion, adhesion period and wash cycle performed four times with increasing adhesion period lengths (10, 20, 30 and 40 min). THP-1 cell adhesion was quantified by counting adherent cells. WSCM induced dose-dependent increases in monocyte adhesion compared to vehicle control. No such increases were observed for eVCM or nicotine. Adhesion regulation was linked to increased ICAM-1 protein expression. Staining of ICAM-1 in HAECs and CD11b (MAC-1) in THP-1 cells demonstrated adhesion molecule co-localisation in BioFlux plates. The ICAM-1 adhesion response to WSCM was downregulated by transfecting HAECs with ICAM-1 siRNA. We conclude that the BioFlux system is able to model human monocyte adhesion to primary human endothelial cells in vitro and WSCM drives the greatest increase in monocyte adhesion via a mechanism involving endothelial ICAM-1 expression.


2013 ◽  
Vol 93 (5) ◽  
pp. 789-800 ◽  
Author(s):  
Katherine S. Harker ◽  
Norikiyo Ueno ◽  
Tingting Wang ◽  
Cyrille Bonhomme ◽  
Wendy Liu ◽  
...  

1999 ◽  
Vol 190 (5) ◽  
pp. 607-616 ◽  
Author(s):  
Hideki Iijima ◽  
Ichiro Takahashi ◽  
Daisuke Kishi ◽  
Jin-Kyung Kim ◽  
Sunao Kawano ◽  
...  

T cell receptor α chain–deficient (TCR-α−/−) mice are known to spontaneously develop inflammatory bowel disease (IBD). The colitis that develops in these mice is associated with increased numbers of T helper cell (Th)2-type CD4+TCR-ββ (CD4+ββ) T cells producing predominantly interleukin (IL)-4. To investigate the role of these Th2-type CD4+ββ T cells, we treated TCR-α−/− mice with anti–IL-4 monoclonal antibody (mAb). Approximately 60% of TCR-α−/− mice, including those treated with mock Ab and those left untreated, spontaneously developed IBD. However, anti–IL-4 mAb–treated mice exhibited no clinical or histological signs of IBD, and their levels of mucosal and systemic Ab responses were lower than those of mock Ab–treated mice. Although TCR-α−/− mice treated with either specific or mock Ab developed CD4+ββ T cells, only those treated with anti–IL-4 mAb showed a decrease in Th2-type cytokine production at the level of mRNA and protein and an increase in interferon γ–specific expression. These findings suggest that IL-4–producing Th2-type CD4+ββ T cells play a major immunopathological role in the induction of IBD in TCR-α−/− mice, a role that anti–IL-4 mAb inhibits by causing Th2-type CD4+ββ T cells to shift to the Th1 type.


2016 ◽  
Vol 213 (9) ◽  
pp. 1695-1703 ◽  
Author(s):  
Haiyin Liu ◽  
Reema Jain ◽  
Jing Guan ◽  
Vivian Vuong ◽  
Satoshi Ishido ◽  
...  

Major histocompatibility complex class II (MHC II) expression is tightly regulated, being subjected to cell type–specific mechanisms that closely control its levels at the cell surface. Ubiquitination by the E3 ubiquitin ligase MARCH 1 regulates MHC II expression in dendritic cells and B cells. In this study, we demonstrate that the related ligase MARCH 8 is responsible for regulating surface MHC II in thymic epithelial cells (TECs). March8−/− mice have elevated MHC II at the surface of cortical TECs and autoimmune regulator (AIRE)− medullary TECs (mTECs), but not AIRE+ mTECs. Despite this, thymic and splenic CD4+ T cell numbers and repertoires remained unaltered in March8−/− mice. Notably, the ubiquitination of MHC II by MARCH 8 is controlled by CD83. Mice expressing a mutated form of CD83 (Cd83anu/anu mice) have impaired CD4+ T cell selection, but deleting March8 in Cd83anu/anu mice restored CD4+ T cell selection to normal levels. Therefore, orchestrated regulation of MHC II surface expression in TECs by MARCH 8 and CD83 plays a major role in CD4+ T cell selection. Our results also highlight the specialized use of ubiquitinating machinery in distinct antigen-presenting cell types, with important functional consequences and implications for therapeutic manipulation.


Sign in / Sign up

Export Citation Format

Share Document