scholarly journals The sialyltransferase ST3Gal-IV guides murine T-cell progenitors to the thymus

2020 ◽  
Vol 4 (9) ◽  
pp. 1930-1941
Author(s):  
Selina Sitte ◽  
Daniela Doehler ◽  
Markus Sperandio ◽  
Jamey D. Marth ◽  
David Voehringer

Abstract T lymphocytes are important players in beneficial and detrimental immune responses. In contrast to other lymphocyte populations that develop in the bone marrow, T-cell precursors need to migrate to the thymus for further development. The interaction of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) is crucial for thymic entry of T-cell precursors during settings of T-cell lineage reconstitution. PSGL-1 has to be sialylated to function as a ligand for P-selectin, and the sialyltransferase ST3Gal-IV might play a critical role in this process. We therefore investigated the role of ST3Gal-IV for T-cell development using competitive mixed bone marrow chimeric mice. We found that ST3Gal-IV is dispensable for homing and engraftment of hematopoietic precursors in the bone marrow. However, ST3Gal-IV deficiency affects seeding of the thymus by early T-cell progenitors, leading to impaired restoration of the peripheral T-cell compartment. This defect could be restored by ectopic retroviral expression of ST3Gal-IV in hematopoietic stem cells derived from ST3Gal-IV–deficient donor mice. Our findings show that ST3Gal-IV plays a critical and nonredundant role for efficient T-cell lineage reconstitution after bone marrow transplantation.

2020 ◽  
Vol 11 ◽  
Author(s):  
Courtney B. Johnson ◽  
Jizhou Zhang ◽  
Daniel Lucas

Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Yanqing Gong ◽  
Jane Hoover-Plow ◽  
Ying Li

Ischemic heart disease, including myocardial infarction (MI), is the primary cause of death throughout the US. Granulocyte colony-stimulating factor (G-CSF) is used to mobilize hematopoietic progenitor and stem cells (HPSC) to improve cardiac recovery after MI. However, poor-mobilization to G-CSF is observed in 25% of patients and 10-20% of healthy donors. Therefore, a better understanding of the underlying mechanisms regulating G-CSF-induced cardiac repair may offer novel approaches for strengthening stem cell-mediated therapeutics. Our previous studies have identified an essential role of Plg in HPSC mobilization from bone marrow (BM) in response to G-CSF. Here, we investigate the role of Plg in G-CSF-stimulated cardiac repair after MI. Our data show that G-CSF significantly improves cardiac tissue repair including increasing neovascularization in the infarct area, and improving ejection fraction and LV internal diameter by echocardiogram in wild-type mice. No improvement in tissue repair and heart function by G-CSF is observed in Plg -/- mice, indicating that Plg is required for G-CSF-regulated cardiac repair after MI. To investigate whether Plg regulates HPSC recruitment to ischemia area, bone marrow transplantion (BMT) with EGFP-expressing BM cells was performed to visualize BM-derived stem cells in infarcted tissue. Our data show that G-CSF dramatically increases recruitment of GFP+ cells (by 16 fold) in WT mice but not in Plg -/- mice, suggesting that Plg is essential for HPSC recruitment from BM to the lesion sites after MI. In further studies, we investigated the role of Plg in the regulation of SDF-1/CXCR-4 axis, a major regulator for HPSC recruitment. Our results show that G-CSF significantly increases CXCR-4 expression in infarcted area in WT mice. While G-CSF-induced CXCR-4 expression is markedly decreased (80%) in Plg -/- mice, suggesting Plg may regulate CXCR-4 expression during HSPC recruitment to injured heart. Interestingly, Plg does not affect SDF-1 expression in response to G-CSF treatment. Taken together, our findings have identified a critical role of Plg in HSPC recruitment to the lesion site and subsequent tissue repair after MI. Thus, targeting Plg may offer a new therapeutic strategy to improve G-CSF-mediated cardiac repair after MI.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3469-3469
Author(s):  
Pratibha Singh ◽  
Seiji Fukuda ◽  
Janardhan Sampath ◽  
Louis M. Pelus

Abstract Interaction of CXCR4 expressed on hematopoietic stem and progenitor cells (HSPC) with bone-marrow stromal SDF-1 is believed to play a central role in retention or mobilization of HSPC. Recently, a mobilization regimen of G-CSF was shown to decrease osteoblast number resulting in reduced levels of bone-marrow SDF-1, however the detailed mechanism leading to this reduction is currently unknown. It is unlikely that G-CSF directly regulates osteoblast SDF-1 production since osteoblasts do not express G-CSF receptor. Proteolytic cleavage of SDF-1 by peptidase CD26 in the bone-marrow may be an alternative mechanism responsible for reduction of SDF-1 level. Although CD26 can cleave SDF-1 in vitro, direct evidence of SDF-1 cleavage by CD26 in vivo during G-CSF induced HSPC mobilization has not been demonstrated. We previously demonstrated that neutrophils are required for G-CSF induced HSPC mobilization and that CD26 expression on neutrophils, rather than HSPC, is critical for mobilization. To more fully understand the role of CD26 in altering SDF-1 protein/activity during G-CSF induced HSPC mobilization, we quantitated bone-marrow SDF-1 levels in CD26−/− and wild-type CD26+/+ mice by ELISA during G-CSF administration. A standard 4 day G-CSF mobilization regimen (100 μg/kg bid, sc × 4 days) decreased bone-marrow total SDF-1 from 4.55±0.3 to 0.52±0.06 ng/femur in wild-type CD26+/+ mice (8.7-fold) and from 4.51±0.3 to 0.53±0.05 ng/femur (8.5-fold) in CD26−/− mice. However, despite an equivalent decrease in SDF-1, total CFU mobilization and the absolute number of mobilized SKL cells were decreased (3.1 and 2.0 fold lower, respectively) in CD26−/− mice compared to wild-type CD26+/+ controls. These results suggest that the decrease in total SDF-1 level in marrow seen following G-CSF treatment is independent of CD26. Cytological examination of bone-marrow smears showed that the reduction in SDF-1 levels in bone-marrow of both wild-type CD26+/+ and CD26−/− mice following G-CSF administration correlated with an increase in total absolute bone-marrow neutrophil cell number, suggesting a role for neutrophils in modulation of SDF-1 protein. To determine if neutrophils affect osteoblast SDF-1 production, bone marrow Gr-1+ neutrophils from wild-type CD26+/+ and CD26−/− mice were purified using anti-Ly6G magnetic beads and co-cultured with MC3T3-E1 preosteoblasts in vitro. Gr-1+ neutrophils from both wild-type and CD26−/− mice decreased pre-osteoblast SDF-1 production by similar amounts (15.4-fold vs 14.8-fold respectively), while Gr-1 neg cells from both wild-type CD26+/+ or CD26−/− were without effect on SDF-1 levels. Similarly, Gr-1+ neutrophils from both wild-type and CD26−/− mice decreased SDF-1 produced by MC3T3-E1-derived osteoblasts from 1.85±0.3 to 0.52±0.06 ng/ml (3.5 fold) and 0.56±0.07 ng/ml (3.3 fold) respectively, with Gr-1neg cells having no effect. Gr-1+ neutrophils either from wild-type or CD26−/− mice, but not Gr-1neg cells, significantly induced apoptosis of MC3T3-E1 cells as measured by Annexin-V staining (70.5%±10.2 vs 71.2%±12.5 for wild-type CD26+/+ and CD26−/− neutrophils respectively) and significantly inhibited osteoblast activity (20-fold vs 20.6-fold for CD26+/+ and CD26−/− neutrophils respectively) as measured by osteocalcin expression. Furthermore, irrespective of G-CSF treatment, an inverse correlation between absolute neutrophil number and SDF-1 protein levels was observed, suggesting that G-CSF induces neutrophil expansion but does not directly affect SDF-1 production. Collectively, these results provide additional support for the critical role of neutrophils in G-CSF induced mobilization and strongly suggested that neutrophils directly regulate bone-marrow SDF-1 levels independent of CD26 activity.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 77-77
Author(s):  
Hong Xu ◽  
Jun Yan ◽  
Ziqiang Zhu ◽  
Yiming Huang ◽  
Yujie Wen ◽  
...  

Abstract Abstract 77 Adaptive immunity, especially T cells, has long been believed to be the dominant immune barrier in allogeneic transplantation. Targeting host T cells significantly reduces conditioning for bone marrow cell (BMC) engraftment. Innate immunity has been recently shown to pose a significant barrier in solid organ transplantation, but has not been addressed in bone marrow transplantation (BMT). Using T cell deficient (TCR-β/δ−/−) or T and B cell deficient (Rag−/−) mice, we found that allogeneic BMC rejection occurred early before the time required for T cell activation and was T- and B-cell independent, suggesting an effector role for innate immune cells in BMC rejection. Therefore, we hypothesized that by controlling both innate and adaptive immunity, the donor BMC would have a window of advantage to engraft. Survival of BMC in vivo was significantly improved by depleting recipient macrophages and/or NK cells, but not neutrophils. Moreover, depletion of macrophages and NK cells in combination with co-stimulatory blockade with anti-CD154 and rapamycin as a novel form of conditioning resulted in 100% allogeneic engraftment without any irradiation and T cell depletion. Donor chimerism remained stable and durable up to 6 months. Moreover, specific Vβ5½ and Vβ11 clonal deletion was detected in host CD4+ T cells in chimeras, indicating central tolerance to donor alloantigens. Whether and how the innate immune system recognizes or responds to allogeneic BMCs remains unknown. Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. The signaling function of TLR depends on intracellular adaptors. The adaptor MyD88 transmits signals emanating from all TLR, except TLR3 while TRIF specifically mediates TLR3 and TLR4 signaling via type 1 IFN. To further determine the innate signaling pathways in allogeneic BMC rejection, B6 background (H2b) MyD88−/− and TRIF−/− mice were conditioned with anti-CD154/rapamycin plus 100 cGy total body irradiation and transplanted with 15 × 106 BALB/c (H2d) BMC. Only 33.3% of MyD88−/− recipients engrafted at 1 month, resembling outcomes for wild-type B6 mice. In contrast, 100% of TRIF−/− mice engrafted. The level of donor chimerism in TRIF−/− mice was 5.1 ± 0.6% at one month, significantly higher than in MyD88−/− and wild-type B6 controls (P < 0.005). To determine the mechanism of innate signaling in BMC rejection, we examined whether TRIF linked TLR3 or TLR4 is the key pattern recognition receptor involved in BMC recognition. To this end, TLR3−/− and TLR4−/− mice were transplanted with BALB/c BMC with same conditioning. None of the TLR3−/− mice engrafted. In contrast, engraftment was achieved in 100% of TLR4−/− mice up to 6 months follow up. Taken together, these results suggest that rejection of allogeneic BMC is uniquely dependent on the TLR4/TRIF signaling pathway. Thus, our results clearly demonstrate a previously unappreciated role for innate immunity in allogeneic BMC rejection. Our current findings are distinct from prior reports demonstrating a critical role of MyD88 in rejection of allogeneic skin grafts and lung, and may reflect unique features related to BMC. The findings of the role of innate immunity in BMC rejection would lead to revolutionary changes in our understanding and management of BMT. This would be informative in design of more specific innate immune targeted conditioning proposals in BMT to avoid the toxicity. Disclosures: Bozulic: Regenerex LLC: Employment. Ildstad:Regenerex LLC: Equity Ownership.


2021 ◽  
Vol 22 (17) ◽  
pp. 9615
Author(s):  
Ji-Yoon Noh

Platelets play a critical role in hemostasis and thrombus formation. Platelets are small, anucleate, and short-lived blood cells that are produced by the large, polyploid, and hematopoietic stem cell (HSC)-derived megakaryocytes in bone marrow. Approximately 3000 platelets are released from one megakaryocyte, and thus, it is important to understand the physiologically relevant mechanism of development of mature megakaryocytes. Many genes, including several key transcription factors, have been shown to be crucial for platelet biogenesis. Mutations in these genes can perturb megakaryopoiesis or thrombopoiesis, resulting in thrombocytopenia. Metabolic changes owing to inflammation, ageing, or diseases such as cancer, in which platelets play crucial roles in disease development, can also affect platelet biogenesis. In this review, I describe the characteristics of platelets and megakaryocytes in terms of their differentiation processes. The role of several critical transcription factors have been discussed to better understand the changes in platelet biogenesis that occur during disease or ageing.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3300-3300
Author(s):  
Sussan Dejbakhsh-Jones ◽  
Marcos E. Garcia-Ojeda ◽  
Devavanii Chatterjea ◽  
Aditi Mukhopadhyay ◽  
Irving L. Weissman ◽  
...  

Abstract We identified committed T cell progenitors (CTPs) in the mouse bone marrow that have not rearranged the TCR β gene, express a variety of genes associated with commitment to the T cell lineage including GATA-3 and TCF-1, Cβand Id2, and show a surface marker pattern (CD44+CD25-CD24+CD5-) that is similar to the earliest T cell progenitors in the thymus. More mature committed intermediate progenitors (CIPs) in the marrow have rearranged the TCR gene loci, express Vαand Vβgenes as well as CD3ε, but do not express surface TCR or CD3 receptors. CTPs, but not progenitors from the thymus, reconstituted the αβ T cells in the lymphoid tissues of athymic nu/nu mice. These reconstituted T cells vigorously secreted IFN- γ after stimulation in vitro, and protected the mice against lethal infection with murine cytomegalovirus (MCMV). Also CTPs from the parent strain can reconstitute an F1 MHC haplotype mismatched host. In conclusion, CTPs in wild-type bone marrow can generate functional T cells via an extrathymic pathway.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2221-2221
Author(s):  
Cyrus Khandanpour ◽  
Ulrich Duehrsen ◽  
Tarik Möröy

Abstract Exogenous toxic substances often cause the initiation and development of leukemia and lymphoma by acting as mutagens. N-ethyl-N-nitrosourea (ENU) is a paradigmatic example for such a substance, which introduces point mutations in the genome through DNA damage and repair pathways. ENU is widely used to experimentally induce T-cell lymphomas in mice. We have used ENU to investigate whether the hematopoietic transcription factor Gfi1 is required for lymphomagenesis. The Gfi1 gene was originally discovered as a proviral target gene and a series of experiments with transgenic mice had suggested a role of Gfi1 as a dominant oncogene with the ability to cooperate with Myc and Pim genes in the generation of T-cell lymphoma. In addition, Gfi1 deficient mice showed a defect in T-cell maturation but also aberration in myeloid differentiation and an accumulation of myelomonocytic cells. ENU was administered i.p. once a week for three weeks with a total dose of 300mg/kg to wild type (wt) and Gfi1 null mice. Wild type mice (12/12) predominantly developed T-cell tumors and rarely acute myeloid leukemia, as expected. However, only 2/8 Gfi1 −/− mice succumbed to lymphoid neoplasia; they rather showed a severe dysplasia of the bone marrow that was more pronounced than in wt controls. These changes in Gfi1 null mice were accompanied by a dramatic decrease of the LSK (Lin-, Sca1- and c-Kit+) bone marrow fraction that contains hematopoietic stem cells and by a higher percentage (18%) of bone marrow cells, not expressing any lineage markers (CD4, CD 8, Ter 119, Mac1, Gr1, B220, CD3). In particular, we found that the LSK subpopulation of Gfi1 deficient mice showed a noticeable increase in cells undergoing apoptosis suggesting a role of Gfi1 in hematopoietic stem cell survival. In addition, Gfi1−/− bone marrow cells and thymic T-cells were more sensitive to DNA damage such as radiation and exposure to ENU than their wt counterparts pointing to a role of Gfi1 in DNA damage response. Our results indicate that Gfi1 is required for development of T-cell tumors and that a loss of Gfi1 may sensitize hematopoietic cells and possibly hematopoietic stem cells for programmed cell death. Further studies have to show whether interfering with Gfi1 expression or function might represent a tool in the therapy of leukemia.


Blood ◽  
2011 ◽  
Vol 118 (14) ◽  
pp. 3853-3861 ◽  
Author(s):  
Yi Zhang ◽  
Sandra Stehling-Sun ◽  
Kimberly Lezon-Geyda ◽  
Subhash C. Juneja ◽  
Lucie Coillard ◽  
...  

Abstract The Mds1 and Evi1 complex locus (Mecom) gives rise to several alternative transcripts implicated in leukemogenesis. However, the contribution that Mecom-derived gene products make to normal hematopoiesis remains largely unexplored. To investigate the role of the upstream transcription start site of Mecom in adult hematopoiesis, we created a mouse model with a lacZ knock-in at this site, termed MEm1, which eliminates Mds1-Evi1 (ME), the longer, PR-domain–containing isoform produced by the gene (also known as PRDM3). β-galactosidase–marking studies revealed that, within hematopoietic cells, ME is exclusively expressed in the stem cell compartment. ME deficiency leads to a reduction in the number of HSCs and a complete loss of long-term repopulation capacity, whereas the stem cell compartment is shifted from quiescence to active cycling. Genetic exploration of the relative roles of endogenous ME and EVI1 isoforms revealed that ME preferentially rescues long-term HSC defects. RNA-seq analysis in Lin−Sca-1+c-Kit+ cells (LSKs) of MEm1 documents near complete silencing of Cdkn1c, encoding negative cell-cycle regulator p57-Kip2. Reintroduction of ME into MEm1 LSKs leads to normalization of both p57-Kip2 expression and growth control. Our results clearly demonstrate a critical role of PR-domain–containing ME in linking p57-kip2 regulation to long-term HSC function.


Sign in / Sign up

Export Citation Format

Share Document