scholarly journals Decreased IL-10 accelerates B-cell leukemia/lymphoma in a mouse model of pediatric lymphoid leukemia

Author(s):  
Briana Fitch ◽  
Mi Zhou ◽  
Jamilla Situ ◽  
Sangeetha Surianarayanan ◽  
Melissa Q Reeves ◽  
...  

Exposures to a wide repertoire of common childhood infections and strong inflammatory responses to those infections are associated with risk of pediatric B-cell acute lymphoblastic leukemia (B-ALL) in opposing directions. Neonatal inflammatory markers are also related to risk by unknown mechanism(s). Here, we demonstrate that IL-10 deficiency, which is associated with childhood B-ALL, indirectly impairs B lymphopoiesis and increases B-cell DNA damage in association with a module of 6 proinflammatory/myeloid-associated cytokines (IL-1α, IL-6, IL-12p40, IL-13, MIP-1β/CCL4, and G-CSF). Importantly, antibiotics attenuated inflammation and B-cell defects in preleukemic Cdkn2a-/-Il10-/- mice. In an ETV6-RUNX1+ (E6R1+) Cdkn2a-/- mouse model of B-ALL, decreased levels of IL-10 accelerated B cell neoplasms in a dose dependent manner, and altered the mutational profile of these neoplasms. Our results illuminate a mechanism through which a low level of IL-10 can create risk of leukemic transformation and support developing evidence that microbial dysbiosis contributes to pediatric B-ALL.

Blood ◽  
2021 ◽  
Author(s):  
Yanchuan Li ◽  
Xiaoping Xie ◽  
Zuliang Jie ◽  
Lele Zhu ◽  
Jin-Young Yang ◽  
...  

B cell-activating factor (BAFF) mediates B cell survival and, when deregulated, also contributes to autoimmune diseases and B cell malignancies. The mechanism connecting BAFF receptor (BAFFR) signal to downstream pathways and pathophysiological functions is not well understood. Here we identified DYRK1a as a kinase that responds to BAFF stimulation and mediates BAFF-induced B cell survival. B cell-specific DYRK1a deficiency causes peripheral B cell reduction and ameliorates autoimmunity in a mouse model of lupus. An unbiased screen identified DYRK1a as a protein that interacts with TRAF3, a ubiquitin ligase component mediating degradation of the noncanonical NF-kB-inducing kinase (NIK). DYRK1a phosphorylates TRAF3 at serine-29 to interfere with its function in mediating NIK degradation, thereby facilitating BAFF-induced NIK accumulation and noncanonical NF-kB activation. Interestingly, B cell acute lymphoblastic leukemia (B-ALL) cells express high levels of BAFFR and respond to BAFF for noncanonical NF-kB activation and survival in a DYRK1a-dependent manner. Furthermore, DYRK1a promotes a mouse model of B-ALL through activation of the noncanonical NF-kB pathway. These results establish DYRK1a as a critical BAFFR signaling mediator and provide novel insight into B-ALL pathogenesis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5276-5276 ◽  
Author(s):  
Suping Zhang ◽  
Lin Song ◽  
Na Yuan ◽  
Weiwei Lin ◽  
Yan Cao ◽  
...  

Abstract Background: B cell acute lymphoblastic leukemia (B-ALL) accounts for the most cancer incidences in children. The t(1;19) translocation leukemia accounts for a quarter of pre-B ALL and up to 5% of all ALL patients, in which the transcriptional activator E2A and homeobox pre-B-cell leukemia transcription factor 1 (PBX1) fuses, resulting in expression of the chimeric transcription factor E2A/PBX1. E2A/PBX1 has been proved to be an oncogene and could induce malignant transformation. Methods: (1) Childhood B-ALL patients were collected and the stem/progenitor cells (CD34+CD38-) and leukemia cells (CD19+) were sorted with BD FACS Aria III. The autophagy level in these cells was measured by real-time Q-PCR, including gene expression of Beclin1, Atg7, Atg5, LC3 and p62. Normal bone marrow cells from healthy donors were used as control. (2) E2A/PBX1 fusion gene positive pre-B ALL 697 cells were used to establish leukemia mouse model and the autophagy activity in the mice was enhanced by administration of rapamycin. Mice were sacrificed three weeks post treatment, leukemia phenotype was then identified and E2A/PBX1 oncoprotein of liver was detected by western blotting. (3) Autophagy and ubiquitination were manipulated with inhibitors or starvation in 697 cells and the degradation mechanism of E2A/PBX1 was explored. Co-localization of E2A/PBX1-LC3 and E2A/PBX1-Ub was observed by confocal microscopy and quantified by Amnis image flow cytometry. Results: (1) B-ALL primary cells from childhood patients show down-regulated level of autophagy. (2) The NOD-SCID mouse model study shows that activating autophagy of mice by rapamycin improved the survival of leukemia animals, prevented leukemiagenesis by inhibition on the transplanted leukemia cells (examined by blood cell counting, liver HE staining and expression of CD 45, 10, 19 from transplanted human 697 cells by flow cytometry), promoted the degradation of oncoprotein E2A/PBX1 (by Western blotting)), and more importantly, restored hematopoietic stem cells (LSKCD34- cell number detected by flow cytometry). (3) The ALL 697 cell line study shows that activation of autophagy by rapamycin and starvation could down-regulate E2A/PBX1 expression detected by flow cytometry and western blotting. The confocal microscopic results show co-localization of E2A/PBX1 with autophagy marker GFP-LC3 in both rapamycin and starvation treatment groups. To confirm the degradation mechanism, autophagy inhibitor (3-MA or Baf-A1) and ubiquitin-proteasome inhibitor (MG132) were used to treat 697 cells. The results show that inhibition of autophagy in the early stage by 3-MA fails to degrade E2A/PBX1 in 697 cells, but ubiquitination also contributes to the degradation of E2A/PBX1. Quantitative analysis shows increased co-localization percentage of E2A/PBX1-LC3 in rapamycin and starvation treatment groups and increased co-localization of E2A/PBX1 with Ubiquitin in starvation group; but MG132 treatment inhibited the co-localization of E2A/PBX1-Ub induced by starvation, indicating a collaborative role between autophagy and ubiquitination in the degradation of E2A/PBX1. Conclusions: B-ALL primary cells from patients show low autophagy activity; Autophagy activation fights against B-ALL by inhibition on transplanted leukemia cells, degradation of oncoprotein E2A/Pbx1 and restoration of hematopoietic stem cells in the NOD-SCID B-ALL mouse model; autophagy collaborates with ubiquitination in the degradation of E2A/PBX1 in the 697 cells, thereby proposing a novel strategy for targeted therapy on childhood B-ALL. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Carolina R. Batista ◽  
Michelle Lim ◽  
Anne-Sophie Laramée ◽  
Faisal Abu-Sardanah ◽  
Li S. Xu ◽  
...  

AbstractPrecursor B-cell acute lymphoblastic leukemia (B-ALL) is associated with recurrent mutations that occur in cancer-initiating cells. There is a need to understand how spontaneous driver mutations influence clonal evolution in leukemia. The ETS-transcription factors PU.1 and Spi-B (encoded bySpi1andSpib) execute a critical role in B cell development and serve as complementary tumour suppressors by opposing the proliferative events mediated by IL-7R signaling. Here, we used a mouse model to conditionally deleteSpi1andSpibgenes in developing B cells. These mice developed B-ALL with a median time to euthanasia of 18 weeks. We performed RNA and whole-exome sequencing (WES) on leukemias isolated from Mb1-CreΔPB mice and identified single-nucleotide variants (SNVs) inJak1,Jak3andIkzf3genes, resulting in amino acid changes and in the gain of early stop-codons. JAK3 mutations resulted in amino acid substitutions located in the pseudo-kinase (R653H, V670A) and in the kinase (T844M) domains. Introduction of these mutations into wild-type pro-B cells conferred survival and proliferation advantages. We conclude that mutations in Janus kinases represent secondary drivers of leukemogenesis in the absence of Spi-B and PU.1 transcription factors. This mouse model represents an useful tool to study clonal evolution and tumour heterogeneity in B-ALL.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4075-4075
Author(s):  
Briana Fitch ◽  
Michelle L. Hermiston ◽  
Joseph L. Wiemels ◽  
Scott C. Kogan

Abstract B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignancy of childhood. While significant progress has been made in the treatment of B-ALL, the factors that influence the development of B-ALL remain poorly understood. Epidemiological studies have established a role of early childhood infections in altering leukemia risk. The focus of these studies has been on documenting the number and timing of infectious exposures; however, the role of host immune response to infections in B-ALL development is largely unknown. Low birth levels of the immunomodulatory cytokine interleukin 10 (IL-10) are associated with a 25 fold increased risk of developing childhood B-ALL. Mechanistically, IL-10 plays a critical role in controlling the neonatal immune response to infections. Together, these findings suggest that IL-10, an important regulator of host immune responsiveness, protects against childhood B-ALL. To establish whether loss of IL-10 has an impact on leukemogenesis, we crossed Il10 knockout mice to the TEL-AML1 (ETVX6-RUNX1I) Ckdn2anull mouse model of childhood B-ALL. ETV6-RUNX1 t(12;21) is the most frequent chromosomal translocation in childhood B-ALLand one-fourth of these leukemias are observed in combination with loss of the Cdkn2a locus. The leukemia incidence in TEL-AML1 Ckdn2anull mice is 60%, therefore this is a robust and clinically relevant mouse model of childhood B-ALL. We used this model to assess the role of IL-10 in leukemogenesis by following Il10 knockout TEL-AML1 Ckdn2anull mice for the development of disease in comparison with control IL-10 expressing TEL-AML1 Ckdn2anull mice. We found that Il10 knockout accelerated leukemogenesis in the presence of TEL-AML1. The cancer free survival of the IL-10 expressing TEL-AML1 Ckdn2anull mice (n=74) was 227 days, whereas the survival of IL-10 knockout mice (n=40) was reduced to 180 days (p<0.0005). These data support a causal role of low levels of IL-10 in the development of B-ALL and raise the possibility of using an IL-10 receptor agonist for leukemia prevention in children with high risk of B-ALL. Thus, IL-10 loss is a defect in the host immune system that accelerates childhood B-ALL development, potentially through modifying immune responses to infections. Studies to understand the mechanism of how low IL-10 levels interact with infections to influence leukemogenesis are underway. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Chiara Borga ◽  
Clay A. Foster ◽  
Sowmya Iyer ◽  
Sara P. Garcia ◽  
David M. Langenau ◽  
...  

AbstractZebrafish models of T cell acute lymphoblastic leukemia (T-ALL) have been studied for over a decade, but curiously, robust zebrafish B cell ALL (B-ALL) models had not been described. Recently, our laboratories reported two seemingly closely-related models of zebrafish B-ALL. In these genetic lines, the primary difference is expression of either murine or human transgenic c-MYC, each controlled by the zebrafish rag2 promoter. Here, we compare ALL gene expression in both models. Surprisingly, we find that B-ALL arise in different B cell lineages, with ighm+ vs. ighz+ B-ALL driven by murine Myc vs. human MYC, respectively. Moreover, these B-ALL types exhibit signatures of distinct molecular pathways, further unexpected dissimilarity. Thus, despite sharing analogous genetic makeup, the ALL types in each model are markedly different, proving subtle genetic changes can profoundly impact model organism phenotypes. Investigating the mechanistic differences between mouse and human c-MYC in these contexts may reveal key functional aspects governing MYC-driven oncogenesis in human malignancies.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1966 ◽  
Author(s):  
Bastian J. Schmied ◽  
Martina S. Lutz ◽  
Fabian Riegg ◽  
Latifa Zekri ◽  
Jonas S. Heitmann ◽  
...  

Antibody-dependent cellular cytotoxicity (ADCC) is a major mechanism by which antitumor antibodies mediate therapeutic efficacy. At present, we evaluate an Fc-optimized (amino acid substitutions S239D/I332E) FLT3 antibody termed 4G8-SDIEM (FLYSYN) in patients with acute myeloid leukemia (NCT02789254). Here we studied the possibility to induce NK cell ADCC against B-cell acute lymphoblastic leukemia (B-ALL) by Fc-optimized FLT3 antibody treatment. Flow cytometric analysis confirmed that FLT3 is widely expressed on B-ALL cell lines and leukemic cells of B-ALL patients. FLT3 expression did not correlate with that of CD20, which is targeted by Rituximab, a therapeutic monoclonal antibody (mAb) employed in B-ALL treatment regimens. Our FLT3 mAb with enhanced affinity to the Fc receptor CD16a termed 4G8-SDIE potently induced NK cell reactivity against FLT3-transfectants, the B-ALL cell line SEM and primary leukemic cells of adult B-ALL patients in a target-antigen dependent manner as revealed by analyses of NK cell activation and degranulation. This was mirrored by potent 4G8-SDIE mediated NK cell ADCC in experiments with FLT3-transfectants, the cell line SEM and primary cells as target cells. Taken together, the findings presented in this study provide evidence that 4G8-SDIE may be a promising agent for the treatment of B-ALL, particularly in CD20-negative cases.


Author(s):  
Laila Alsuwaidi ◽  
Mahmood Hachim ◽  
Abiola Senok

BackgroundThe extensive genetic heterogeneity found in the B cell precursor acute lymphoblastic leukemia (BCP-ALL) subtype of childhood ALL represents a potential repository of biomarkers. To explore this potential, we have carried out in silico analysis of publicly available ALL datasets to identify genetic biomarkers for childhood BCP-ALL, which could be used either individually or in combination as markers for early detection, risk stratification, and prognosis.MethodsTo explore novel genes that show promising clinical and molecular signatures, we examined the cBioPortal online tool for publicly available datasets on lymphoid cancers. Three studies on lymphoblastic and lymphoid leukemia with 1706 patients and 2144 samples of which were identified. Only B-Lymphoblastic Leukemia/Lymphoma samples (n = 1978) were selected for further analysis. Chromosomal changes were assessed to determine novel genomic loci to analyze clinical and molecular profiles for the leukemia of lymphoid origin using cBioPortal tool.ResultsADAM6 gene homozygous deletions (HOM:DEL) were present in 59.60% of the profiled patients and were associated with poor ten years of overall patients’ survival. Moreover, patients with ADAM6 HOM:DEL showed a distinguished clinical and molecular profile with higher Central Nervous System (CNS) sites of relapse. In addition, ADAM6 HOM:DEL was significantly associated with unique microRNAs gene expression patterns.ConclusionADAM6 has the potential to be a novel biomarker for the development and progress of BCP- ALL.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1632
Author(s):  
Fabian Riegg ◽  
Martina S. Lutz ◽  
Bastian J. Schmied ◽  
Jonas S. Heitmann ◽  
Manon Queudeville ◽  
...  

In recent decades, antibody-dependent cellular cytotoxicity (ADCC)-inducing monoclonal antibodies (mAbs) have revolutionized cancer immunotherapy, and Fc engineering strategies have been utilized to further improve efficacy. A promising option is to enhance the affinity of an antibody’s Fc-part to the Fc-receptor CD16 by altering the amino acid sequence. Herein, we characterized an S239D/I332E-modified CD133 mAb termed 293C3-SDIE for treatment of B cell acute lymphoblastic leukemia (B-ALL). Flow cytometric analysis revealed CD133 expression on B-ALL cell lines and leukemic cells of 50% (14 of 28) B-ALL patients. 293C3-SDIE potently induced NK cell reactivity against the B-ALL cell lines SEM and RS4;11, as well as leukemic cells of B-ALL patients in a target antigen-dependent manner, as revealed by analysis of NK cell activation, degranulation, and cytotoxicity. Of note, CD133 expression did not correlate with BCR-ABL, CD19, CD20, or CD22, which are presently used as therapeutic targets in B-ALL, which revealed CD133 as an independent target for B-ALL treatment. Increased CD133 expression was also observed in MLL-AF4-rearranged B-ALL, indicating that 293C3-SDIE may constitute a particularly suitable treatment option in this hard-to-treat subpopulation. Taken together, our results identify 293C3-SDIE as a promising therapeutic agent for the treatment of B-ALL.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-9
Author(s):  
Zhen Lu ◽  
Liying Feng ◽  
Qinwei Chen ◽  
Bing Xu

Methuosis is a newly defined nonapoptotic cell death characterized by the accumulation of large liquid-filled vacuoles in cytoplasm, which is distinct from necrosis, autophagy and apoptosis. A novel azaindole-based methuosis inducer, named HZX-02-059, displays cytotoxic effects to a series of cancer cellular models via blocking the role of PIKfyve. The discovery of HZX-02-059 sheds light on a novel therapeutic option for refractory cancer patients who have limited effective treatments. Despite significant advances in treatments, over 50% of adult patients with B-cell acute lymphoblastic leukemia (B-ALL) fail to achieve durable responses with current intensive chemotherapies, which highlight an urgent need of new therapeutic regimens for this patient population. Here, we applied HZX-02-059 to B-ALL cell lines and mice models to uncover its potential role and underlying mechanism. Morphology changes of HZX-02-059-treated B-ALL cells were observed under the light microscope, and these treated cells were to certain extent collapsed into debris. Of note, higher concentration of this compound induced the accumulation of substantial larger vacuoles in cytoplasm. To assess the cytotoxicity of this compound, we performed cell counting kit-8 (CCK-8) and colony forming unit (CFU) assays. As expected, HZX-02-059 significantly inhibited cancer cell proliferation and reduced the capability of cell colony forming in a dose-dependent manner. Next, we carried out an EdU assay to determine the influence of HZX-02-059 on cell cycle distribution. As a result, B-ALL cells treated with HZX-02-059 were mainly blocked at G2/M phase. Western blotting was conducted to investigate the underlying molecular basis of HZX-02-059 in B-ALL. To the end, we found that HZX-02-059 negatively regulated the proteins involved in the PI3K/AKT pathway. Also, this drug decreased the expression of the pathway downstream transcription factors NF-ǐB and c-Myc, suggesting that the dysregulation of the PI3K/AKT axis is a potential mechanism of action of HZX-02-059 against B-ALL. To further evaluate itsin vivotherapeutic effect, B-ALL patient-derived xenograft (PDX) mice were established and administrated with HZX-02-059. The result revealed a survival benefit of the treatment as compared with the control, which grants this molecule great potential for clinical usage. Thus, our results suggest that HZX-02-059 is a potent anti-BALL reagent in preclinical models that warrant further investigation of this drug as an alternative therapeutic strategy for B-ALL patients who are resistant to conventional therapies. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document