scholarly journals Activation of immune cell proteasomes in peripheral blood of smokers and COPD patients - implications for therapy

2021 ◽  
pp. 2101798
Author(s):  
Ilona E. Kammerl ◽  
Sophie Hardy ◽  
Claudia Flexeder ◽  
Andrea Urmann ◽  
Julia Peierl ◽  
...  

Immune cells contain a specialised type of proteasome, i.e. the immunoproteasome, which is required for intracellular protein degradation. Immunoproteasomes are key regulators of immune cell differentiation, inflammatory activation and autoimmunity. Immunoproteasome function in peripheral immune cells might be altered by smoking and in COPD thereby affecting immune cell responses.We here analysed the expression and activity of proteasome complexes in peripheral blood mononuclear cells (PBMC) isolated from healthy male young smokers as well as from patients with severe COPD and compared them to matching controls. Proteasome expression was upregulated in COPD patients as assessed by RT-qPCR and mass spectrometry-based proteomics analysis. Proteasome activity was quantified using activity-based probes and native gel analysis. We observed distinct activation of immunoproteasomes in the peripheral blood cells of young male smokers and severely ill COPD patients. Native gel analysis and linear regression modeling confirmed robust activation and elevated assembly of 20S proteasomes, which correlated significantly with reduced lung function parameters in COPD patients. The immunoproteasome was distinctly activated in COPD patients upon inflammatory cytokine stimulation of PBMCs in vitro. Inhibition of the immunoproteasome reduced proinflammatory cytokine expression in COPD-derived blood immune cells.Given the crucial role of chronic inflammatory signalling and the emerging involvement of autoimmune responses in COPD, therapeutic targeting of the immunoproteasome might represent a novel therapeutic concept for COPD.

Author(s):  
Roosheel S. Patel ◽  
Joy E. Tomlinson ◽  
Thomas J. Divers ◽  
Gerlinde R. Van de Walle ◽  
Brad R. Rosenberg

ABSTRACTTraditional laboratory model organisms represent a small fraction of the diversity of multicellular life, and findings in any given experimental model often do not translate to other species. Immunology research in non-traditional model organisms can be advantageous or even necessary (e.g. for host-pathogen interaction studies), but presents multiple challenges, many stemming from an incomplete understanding of potentially species-specific immune cell types, frequencies and phenotypes. Identifying and characterizing immune cells in such organisms is frequently limited by the availability of species-reactive immunophenotyping reagents for flow cytometry, and insufficient prior knowledge of cell type-defining markers. Here, we demonstrate the utility of single cell RNA sequencing (scRNA-Seq) to characterize immune cells for which traditional experimental tools are limited. Specifically, we used scRNA-Seq to comprehensively define the cellular diversity of equine peripheral blood mononuclear cells (PBMCs) from healthy horses across different breeds, ages, and sexes. We identified 30 cell type clusters partitioned into five major populations: Monocytes/Dendritic Cells, B cells, CD3+PRF1+ lymphocytes, CD3+PRF1- lymphocytes, and Basophils. Comparative analyses revealed many cell populations analogous to human PBMC, including transcriptionally heterogeneous monocytes and distinct dendritic cell subsets (cDC1, cDC2, plasmacytoid DC). Unexpectedly, we found that a majority of the equine peripheral B cell compartment is comprised of T-bet+ B cells; an immune cell subpopulation typically associated with chronic infection and inflammation in human and mouse. Taken together, our results demonstrate the potential of scRNA-Seq for cellular analyses in non-traditional model organisms, and form the basis for an immune cell atlas of horse peripheral blood.


2019 ◽  
Vol 67 (7) ◽  
pp. 1053-1060
Author(s):  
Elżbieta Kozłowska ◽  
Paulina Żelechowska ◽  
Adam Wysokiński ◽  
Paweł Rasmus ◽  
Anna Łucka ◽  
...  

Increasing evidence has shown that the immune system is involved in the schizophrenia development, with alterations in immune cell reactivity being one possible factor contributing to its pathogenesis. The purpose of the study was to evaluate in vitro the capability of peripheral blood mononuclear cells (PBMCs) obtained from subjects with schizophrenia and controls to engage in spontaneous and phytohemagglutinin (PHA)-stimulated cytokine production. The concentrations of various cytokines (interleukin (IL)-1β, IL-17A, tumor necrosis factor (TNF), interferon (IFN)-γ and IL-10) in supernatants from cultured PBMCs were measured using the cytometric bead array. No significant differences in the spontaneous production of IL-1β, IL-17A, IFN-γ and IL-10 by PBMCs were detected between individuals with schizophrenia and controls. TNF synthesis by PBMCs was found to be lower among those with schizophrenia. In all subjects and controls, greater cytokine generation was associated with PBMCs treated with PHA compared with those that were not. The PBMCs from people with schizophrenia displayed considerably higher sensitivity to mitogen stimulation, as the production of IL-17A, TNF and IFN-γ was at least threefold of that observed in healthy subjects, which may be driven by antipsychotics taken by patients with schizophrenia. Correlation was observed between spontaneous production of IFN-γ and Positive and Negative Syndrome Scale G subscore (which measures the general symptoms of schizophrenia) and between PHA-stimulated synthesis of IL–17A and G subscore. Our data confirm that the immune system dysregulation may underlie schizophrenia pathophysiology. There is a potential possibility that immunological tests could be used as a diagnostic, therapeutic and side-effects biomarker for schizophrenia, but further studies are needed.


2021 ◽  
Vol 35 ◽  
pp. 205873842110565
Author(s):  
Shaoping Shen ◽  
Qiyan Wu ◽  
Jialin Liu ◽  
Liangliang Wu ◽  
Rong Zhang ◽  
...  

One biomarker for a better therapeutic effect of immune checkpoint inhibitors is high expression of checkpoint in tumor microenvironment The purpose of this study is to investigate the expression of immune checkpoints in human glioma microenvironment and peripheral blood mononuclear cells. First, single-cell suspension from 20 fresh high-grade glioma (HGG) specimens were obtained, and analyzed for lymphocyte composition, then six co-inhibitory immune checkpoints were analyzed at the same time. Second, 36 PBMC specimens isolated from HGG blood samples were analyzed for the same items. In GME, there were four distinct subtypes of cells, among them, immune cells accounted for an average of 51.3%. The myeloid cell population (CD11b+) was the most common immune cell identified, accounting for 36.14% on average; the remaining were most CD3+CD4+ and CD3+/CD8−/CD4− T lymphocytes. In these cells, we detected the expression of BTLA, LAG3, Tim-3, CTLA-4, and VISTA on varying degrees. While in PBMCs, the result showed that when compared with healthy volunteers, the proportion of NK cells decreased significantly in HGG samples ( p < 0.01). Moreover, the expression of BTLA, LAG3, and Tim-3 in CD45+ immune cells in PBMC was more remarkable in glioma samples. In conclusion, the CD11b+ myeloid cells were the predominant immune cells in GME. Moreover, some immune checkpoints displayed a more remarkable expression on the immune cells in GME. And the profile of checkpoint expression in PBMC was partially consistent with that in GME.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4214-4214
Author(s):  
Weiwei Liu ◽  
Jiayu Chen ◽  
Yangqiu Li ◽  
Demao Yang

Abstract We have developed a cell-based immunotherapy and successfully treated some patients with benzene-induced and idiopathic aplastic anemia (AA). Autologous and/or allogeneic peripheral blood mononuclear cells were cultured in vitro with a combination of cytokines and calcium ionophore for 2 days before given to patients via intravenous infusion--initially with patients with mild or modest disease. However, these patients had been treated with conventional immune suppression plus growth factors for 6 months to 1.5 years. During this rather prolonged time, they did not recover spontaneously, and one or more lineages (mostly platelet) of their peripheral blood counts had never been normal. The frequency of the treatment was once a week and patients stopped receiving any other therapy. Encouraged by the fact that these patients had strong and rapid recovery of blood counts after receiving a number of cycles of the therapy, we then treated patients with more severe disease. This immunotherapy is very powerful in that no patients, among total 29 we have treated so far, even with the most severe form of benzene-induced AA, have failed therapy in our hospitals. It was found that severe disease requires more aggressive and prolonged therapy, the longest period of time we have performed the therapy for such patients is one year. The first group of patients we treated were followed up to 2.5 years and no secondary clonal disorders were found. It was found in our ongoing studies that infusion of large numbers of allogeneic immune cells is even more effective than infusion of small numbers of autologous cells for patients with severe disease. We have used 2–5x108 allogeneic immune cells per infusion per day for 5 consecutive days, followed by small numbers of autologous infusions (1 to 10 million from 50 ml of peripheral blood, depending on the severity of the disease). This cycle of therapy is repeated once a month for as long as the neutrophil count is more than 0.5x109/L. The efficacy of the therapy seems to correlate well with the number of cells infused and the frequency of infusion. The mechanism by which our immunotherapy works is not completely clear to us, and we are currently trying to understand it better by performing various animal experiments to see how stem cells benefit from the therapy. Because allogeneic cells work well for patients with AA, we speculate that our immunotherapy has little to do with HLA-mediated specific immune responses but rather affects target cells, tissues, and organs through cytokines produced by both infused and target cells and cell contact. Analysis of patients’ thymus function indicates improvement in T-cell differentiation and maturation. Finally, we are using the same therapy to treat 6 patients with severe idiopathic AA and have found that the therapy is also effective for these patients. One patient had a complete response after 3 months of therapy and the other 5 have had dramatic improvements in bone marrow histology, reduced blood transfusion, and increased neutrophil, leukocyte and reticulocyte counts after several months of therapy. We found, in general, that idiopathic AA is much more difficult and requires an even longer period of time to cure than benzene-induced AA using this immunotherapy and also that cure of this terrible disease using biotherapeutic approachs may become possible. This simple but very effective immunotherapy may have more potential in treatment of other hematopoietic disorders.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Roosheel S. Patel ◽  
Joy E. Tomlinson ◽  
Thomas J. Divers ◽  
Gerlinde R. Van de Walle ◽  
Brad R. Rosenberg

Abstract Background Traditional laboratory model organisms represent a small fraction of the diversity of multicellular life, and findings in any given experimental model often do not translate to other species. Immunology research in non-traditional model organisms can be advantageous or even necessary, such as when studying host-pathogen interactions. However, such research presents multiple challenges, many stemming from an incomplete understanding of potentially species-specific immune cell types, frequencies, and phenotypes. Identifying and characterizing immune cells in such organisms is frequently limited by the availability of species-reactive immunophenotyping reagents for flow cytometry, and insufficient prior knowledge of cell type-defining markers. Results Here, we demonstrate the utility of single-cell RNA sequencing (scRNA-Seq) to characterize immune cells for which traditional experimental tools are limited. Specifically, we used scRNA-Seq to comprehensively define the cellular diversity of equine peripheral blood mononuclear cells (PBMC) from healthy horses across different breeds, ages, and sexes. We identified 30 cell type clusters partitioned into five major populations: monocytes/dendritic cells, B cells, CD3+PRF1+ lymphocytes, CD3+PRF1− lymphocytes, and basophils. Comparative analyses revealed many cell populations analogous to human PBMC, including transcriptionally heterogeneous monocytes and distinct dendritic cell subsets (cDC1, cDC2, plasmacytoid DC). Remarkably, we found that a majority of the equine peripheral B cell compartment is comprised of T-bet+ B cells, an immune cell subpopulation typically associated with chronic infection and inflammation in human and mouse. Conclusions Taken together, our results demonstrate the potential of scRNA-Seq for cellular analyses in non-traditional model organisms and form the basis for an immune cell atlas of horse peripheral blood.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1037
Author(s):  
Patricia Ruiz-Limon ◽  
Maria L. Ladehesa-Pineda ◽  
Clementina Lopez-Medina ◽  
Chary Lopez-Pedrera ◽  
Maria C. Abalos-Aguilera ◽  
...  

Endothelial dysfunction (ED) is well known as a process that can lead to atherosclerosis and is frequently presented in radiographic axial spondyloarthritis (r-axSpA) patients. Here, we investigated cellular and molecular mechanisms underlying r-axSpA-related ED, and analyzed the potential effect of peripheral blood mononuclear cells (PBMCs) in promoting endothelial injury in r-axSpA. A total of 30 r-axSpA patients and 32 healthy donors (HDs) were evaluated. The endothelial function, inflammatory and atherogenic profile, and oxidative stress were quantified. In vitro studies were designed to evaluate the effect of PBMCs from r-axSpA patients on aberrant endothelial activation. Compared to HDs, our study found that, associated with ED and the plasma proatherogenic profile present in r-axSpA, PBMCs from these patients displayed a pro-oxidative, proinflammatory, and proatherogenic phenotype, with most molecular changes noticed in lymphocytes. Correlation studies revealed the relationship between this phenotype and the microvascular function. Additional in vitro studies confirmed that PBMCs from r-axSpA patients promoted endothelial injury. Altogether, this study suggests the relevance of r-axSpA itself as a strong and independent cardiovascular risk factor, contributing to a dysfunctional endothelium and atherogenic status by aberrant activation of PBMCs. Lymphocytes could be the main contributors in the development of ED and subsequent atherosclerosis in this pathology.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 514
Author(s):  
Denise Utami Putri ◽  
Cheng-Hui Wang ◽  
Po-Chun Tseng ◽  
Wen-Sen Lee ◽  
Fu-Lun Chen ◽  
...  

The heterogeneity of immune response to COVID-19 has been reported to correlate with disease severity and prognosis. While so, how the immune response progress along the period of viral RNA-shedding (VRS), which determines the infectiousness of disease, is yet to be elucidated. We aim to exhaustively evaluate the peripheral immune cells to expose the interplay of the immune system in uncomplicated COVID-19 cases with different VRS periods and dynamic changes of the immune cell profile in the prolonged cases. We prospectively recruited four uncomplicated COVID-19 patients and four healthy controls (HCs) and evaluated the immune cell profile throughout the disease course. Peripheral blood mononuclear cells (PBMCs) were collected and submitted to a multi-panel flowcytometric assay. CD19+-B cells were upregulated, while CD4, CD8, and NK cells were downregulated in prolonged VRS patients. Additionally, the pro-inflammatory-Th1 population showed downregulation, followed by improvement along the disease course, while the immunoregulatory cells showed upregulation with subsequent decline. COVID-19 patients with longer VRS expressed an immune profile comparable to those with severe disease, although they remained clinically stable. Further studies of immune signature in a larger cohort are warranted.


2021 ◽  
Vol 134 ◽  
pp. 58-63
Author(s):  
Matheus Fujimura Soares ◽  
Larissa Martins Melo ◽  
Jaqueline Poleto Bragato ◽  
Amanda de Oliveira Furlan ◽  
Natália Francisco Scaramele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document