Fibroblasts positive for meflin have anti-fibrotic property in pulmonary fibrosis

2021 ◽  
pp. 2003397
Author(s):  
Yoshio Nakahara ◽  
Naozumi Hashimoto ◽  
Koji Sakamoto ◽  
Atsushi Enomoto ◽  
Taylor S. Adams ◽  
...  

The prognosis of elderly individuals with idiopathic pulmonary fibrosis (IPF) remains poor. Fibroblastic foci, in which aggregates of proliferating fibroblasts and myofibroblasts are involved, are the pathological hallmark lesions in IPF to represent focal areas of active fibrogenesis. Fibroblast heterogeneity in fibrotic lesions hampers the discovery of the pathogenesis of pulmonary fibrosis. Therefore, to determine of the pathogenesis of IPF, identification of functional fibroblasts is warranted. This study was aimed to determine the role of fibroblasts positive for meflin, identified as a potential marker for mesenchymal stromal cells, during the development of pulmonary fibrosis. We characterised meflin-positive cells in a single cell atlas established by single-cell RNA sequencing (scRNA-seq)-based profiling of 243 472 cells from 32 IPF lungs and 29 normal lung samples. scRNA-seq combined with in situ RNA hybridisation identified proliferating fibroblasts positive for meflin in fibroblastic foci, not dense fibrosis, of fibrotic lungs in IPF patients. We determined the role of fibroblasts positive for meflin using bleomycin (BLM)-induced pulmonary fibrosis. A BLM-induced lung fibrosis model for meflin-deficient mice showed that fibroblasts positive for meflin had anti-fibrotic property to prevent pulmonary fibrosis. Although transforming growth factor-β-induced fibrogenesis and cell senescence with senescence-associated secretory phenotype were exacerbated in fibroblasts via the repression or lack of meflin, these were inhibited in meflin-deficient fibroblasts with meflin reconstitution. These findings provide evidence to show the biological importance of meflin expression on fibroblasts and myofibroblasts in the active fibrotic region of pulmonary fibrosis.

2009 ◽  
Vol 37 (4) ◽  
pp. 849-854 ◽  
Author(s):  
Amanda Goodwin ◽  
Gisli Jenkins

IPF (idiopathic pulmonary fibrosis) is a chronic progressive disease of unknown aetiology without effective treatment. IPF is characterized by excessive collagen deposition within the lung. Recent evidence suggests that the lung epithelium plays a key role in driving the fibrotic response. The current paradigm suggests that, after epithelial injury, there is impaired epithelial proliferation and enhanced epithelial apoptosis. This in turn promotes lung fibrosis through impaired basement membrane repair and increased epithelial–mesenchymal transition. Furthermore, fibroblasts are recruited to the wounded area and adopt a myofibroblast phenotype, with the up-regulation of matrix-synthesizing genes and down-regulation of matrix-degradation genes. There is compelling evidence that the cytokine TGFβ (transforming growth factor β) plays a central role in this process. In normal lung, TGFβ is maintained in an inactive state that is tightly regulated temporally and spatially. One of the major TGFβ-activation pathways involves integrins, and the role of the αvβ6 integrin has been particularly well described in the pathogenesis of IPF. Owing to the pleiotropic nature of TGFβ, strategies that inhibit activation of TGFβ in a cell- or disease-specific manner are attractive for the treatment of chronic fibrotic lung conditions. Therefore the molecular pathways that lead to integrin-mediated TGFβ activation must be precisely defined to identify and fully exploit novel therapeutic targets that might ultimately improve the prognosis for patients with IPF.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Panpan Liu ◽  
Lei Zhao ◽  
Yuxia Gu ◽  
Meilan Zhang ◽  
Hongchang Gao ◽  
...  

Abstract Background Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung diseases with a poor prognosis. Long non-coding RNAs (lncRNAs) have been reported to be involved in IPF in several studies. However, the role of lncRNA SNHG16 in IPF is largely unknown. Methods Firstly, experimental pulmonary fibrosis model was established by using bleomycin (BML). Histology and Western blotting assays were used to determine the different stages of fibrosis and expression of several fibrosis biomarkers. The expression of SNHG16 was detected by quantitative real-time polymerase chain reaction (qRT‐PCR). EdU staining and wound-healing assay were utilized to analyze proliferation and migration of lung fibroblast cells. Molecular mechanism of SNHG16 was explored by bioinformatics, dual-luciferase reporter assay, RNA immunoprecipitation assay (RIP), and qRT-PCR. Results The expression of SNHG16 was significantly up-regulated in bleomycin-(BLM) induced lung fibrosis and transforming growth factor-β (TGF-β)-induced fibroblast. Knockdown of SNHG16 could attenuate fibrogenesis. Mechanistically, SNHG16 was able to bind and regulate the expression of miR-455-3p. Moreover, SNHG16 also regulated the expression of Notch2 by targeting miR-455-3p. Finally, SNHG16 could promote fibrogenesis by regulating the expression of Notch2. Conclusion Taken together, our study demonstrated that SNHG16 promoted pulmonary fibrosis by targeting miR-455-3p to regulate the Notch2 pathway. These findings might provide a novel insight into pathologic process of lung fibrosis and may provide prevention strategies in the future.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jia He ◽  
Yue Du ◽  
Gaopeng Li ◽  
Peng Xiao ◽  
Xingzheng Sun ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a group of chronic interstitial pulmonary diseases characterized by an inexorable decline in lung function with limited treatment options. The abnormal expression of transforming growth factor-β (TGF-β) in profibrotic macrophages is linked to severe pulmonary fibrosis, but the regulation mechanisms of TGF-β expression are incompletely understood. We found that decreased expression of E3 ubiquitin ligase Fbxw7 in peripheral blood mononuclear cells (PBMCs) was significantly related to the severity of pulmonary fibrosis in IPF patients. Fbxw7 is identified to be a crucial suppressing factor for pulmonary fibrosis development and progression in a mouse model induced by intratracheal bleomycin treatment. Myeloid cell-specific Fbxw7 deletion increases pulmonary monocyte-macrophages accumulation in lung tissue, and eventually promotes bleomycin-induced collagen deposition and progressive pulmonary fibrosis. Notably, the expression of TGF-β in profibrotic macrophages was significantly upregulated in myeloid cell-specific Fbxw7 deletion mice after bleomycin treatment. C-Jun has long been regarded as a critical transcription factor of Tgfb1, we clarified that Fbxw7 inhibits the expression of TGF-β in profibrotic macrophages by interacting with c-Jun and mediating its K48-linked ubiquitination and degradation. These findings provide insight into the role of Fbxw7 in the regulation of macrophages during the pathogenesis of pulmonary fibrosis.


2011 ◽  
Vol 300 (2) ◽  
pp. L191-L203 ◽  
Author(s):  
Narayanan Venkatesan ◽  
Mohamed Ouzzine ◽  
Martin Kolb ◽  
Patrick Netter ◽  
Mara S. Ludwig

Pulmonary fibrosis (PF) is characterized by increased deposition of proteoglycans (PGs), in particular core proteins. Glycosaminoglycans (GAGs) are key players in tissue repair and fibrosis, and we investigated whether PF is associated with changes in the expression and structure of GAGs as well as in the expression of β1,3-glucuronosyltransferase I (GlcAT-I), a rate-limiting enzyme in GAG synthesis. Lung biopsies from idiopathic pulmonary fibrosis (IPF) patients and lung tissue from a rat model of bleomycin (BLM)-induced PF were immunostained for chondroitin sulfated-GAGs and GlcAT-I expression. Alterations in disaccharide composition and sulfation of chondroitin/dermatan sulfate (CS/DS) were evaluated by fluorophore-assisted carbohydrate electrophoresis (FACE) in BLM rats. Lung fibroblasts isolated from control (saline-instilled) or BLM rat lungs were assessed for GAG structure and GlcAT-I expression. Disaccharide analysis showed that 4- and 6-sulfated disaccharides were increased in the lungs and lung fibroblasts obtained from fibrotic rats compared with controls. Fibrotic lung fibroblasts and transforming growth factor-β1 (TGF-β1)-treated normal lung fibroblasts expressed increased amounts of hyaluronan and 4- and 6-sulfated chondroitin, and neutralizing anti-TGF-β1 antibody diminished the same. TGF-β1 upregulated GlcAT-I and versican expression in lung fibroblasts, and signaling through TGF-β type I receptor/p38 MAPK was required for TGF-β1-mediated GlcAT-I and CS-GAG expression in fibroblasts. Our data show for the first time increased expression of CS-GAGs and GlcAT-I in IPF, fibrotic rat lungs, and fibrotic lung fibroblasts. These data suggest that alterations of sulfation isomers of CS/DS and upregulation of GlcAT-I contribute to the pathological PG-GAG accumulation in PF.


2007 ◽  
Vol 177 (6) ◽  
pp. 1105-1117 ◽  
Author(s):  
Anna Spagnoli ◽  
Lynda O'Rear ◽  
Ronald L. Chandler ◽  
Froilan Granero-Molto ◽  
Douglas P. Mortlock ◽  
...  

Despite its clinical significance, joint morphogenesis is still an obscure process. In this study, we determine the role of transforming growth factor β (TGF-β) signaling in mice lacking the TGF-β type II receptor gene (Tgfbr2) in their limbs (Tgfbr2PRX-1KO). In Tgfbr2PRX-1KO mice, the loss of TGF-β responsiveness resulted in the absence of interphalangeal joints. The Tgfbr2Prx1KO joint phenotype is similar to that in patients with symphalangism (SYM1-OMIM185800). By generating a Tgfbr2–green fluorescent protein–β–GEO–bacterial artificial chromosome β-galactosidase reporter transgenic mouse and by in situ hybridization and immunofluorescence, we determined that Tgfbr2 is highly and specifically expressed in developing joints. We demonstrated that in Tgfbr2PRX-1KO mice, the failure of joint interzone development resulted from an aberrant persistence of differentiated chondrocytes and failure of Jagged-1 expression. We found that TGF-β receptor II signaling regulates Noggin, Wnt9a, and growth and differentiation factor-5 joint morphogenic gene expressions. In Tgfbr2PRX-1KO growth plates adjacent to interphalangeal joints, Indian hedgehog expression is increased, whereas Collagen 10 expression decreased. We propose a model for joint development in which TGF-β signaling represents a means of entry to initiate the process.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1084
Author(s):  
Junya Ono ◽  
Masayuki Takai ◽  
Ayami Kamei ◽  
Yoshinori Azuma ◽  
Kenji Izuhara

Periostin is known to be a useful biomarker for various diseases. In this article, we focus on allergic diseases and pulmonary fibrosis, for which we and others are now developing detection systems for periostin as a biomarker. Biomarker-based precision medicine in the management of type 2 inflammation and fibrotic diseases since heterogeneity is of utmost importance. Periostin expression is induced by type 2 cytokines (interleukin-4/-13) or transforming growth factor-β, and plays a vital role in the pathogenesis of allergic inflammation or interstitial lung disease, respectively, andits serum levels are correlated disease severity, prognosis and responsiveness to the treatment. We first summarise the importance of type 2 biomarker and then describe the pathological role of periostin in the development and progression of type 2 allergic inflammation and pulmonary fibrosis. In addition, then, we summarise the recent development of assay methods for periostin detection, and analyse the diseases in which periostin concentration is elevated in serum and local biological fluids and its usefulness as a biomarker. Furthermore, we describe recent findings of periostin as a biomarker in the use of biologics or anti-fibrotic therapy. Finally, we describe the factors that influence the change in periostin concentration under the healthy conditions.


2021 ◽  
pp. 1-8
Author(s):  
Mahmood Tavakkoli ◽  
Saeed Aali ◽  
Borzoo Khaledifar ◽  
Gordon A. Ferns ◽  
Majid Khazaei ◽  
...  

<b><i>Background:</i></b> Post-surgical adhesion bands (PSABs) are a common complication after abdominal or pelvic surgeries for different reasons like cancer treatment. Despite improvements in surgical techniques and the administration of drugs or the use of physical barriers, there has only been limited improvement in the frequency of postoperative adhesions. Complications of PSAB are pain, infertility, intestinal obstruction, and increased mortality. The most important molecular mechanisms for the development of PSAB are inflammatory response, oxidative stress, and overexpression of pro-fibrotic molecules such as transforming growth factor β. However, questions remain about the pathogenesis of this problem, for example, the causes for individual differences or why certain tissue sites are more prone to post-surgical adhesions. <b><i>Summary:</i></b> Addressing the pathological causes of PSAB, the potential role of local angiotensin II/angiotensin II type 1 receptors (AngII/AT1R), may help to prevent this problem. <b><i>Key Message:</i></b> The objective of this article was to explore the role of the AngII/AT1R axis potential to induce PSAB and the therapeutic potential of angiotensin receptor blockers in the prevention and treatment of PSAB.


Sign in / Sign up

Export Citation Format

Share Document