Modulation of the TGF-ß-induced epithelial-to-mesenchymal transition by pan-selective PDE inhibitors in A549 cells

Author(s):  
K Wójcik-Pszczoła ◽  
G Chłoń-Rzepa ◽  
A Jankowska ◽  
M Ślusarczyk ◽  
E Wyska ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 638
Author(s):  
Kittipong Sanookpan ◽  
Nongyao Nonpanya ◽  
Boonchoo Sritularak ◽  
Pithi Chanvorachote

Cancer metastasis is the major cause of about 90% of cancer deaths. As epithelial-to-mesenchymal transition (EMT) is known for potentiating metastasis, this study aimed to elucidate the effect of ovalitenone on the suppression of EMT and metastasis-related behaviors, including cell movement and growth under detached conditions, and cancer stem cells (CSCs), of lung cancer cells. Methods: Cell viability and cell proliferation were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-liumbromide (MTT) and colony formation assays. Cell migration and invasion were analyzed using a wound-healing assay and Boyden chamber assay, respectively. Anchorage-independent cell growth was determined. Cell protrusions (filopodia) were detected by phalloidin-rhodamine staining. Cancer stem cell phenotypes were assessed by spheroid formation. The proteins involved in cell migration and EMT were evaluated by Western blot analysis and immunofluorescence staining. Results: Ovalitenone was used at concentrations of 0–200 μM. While it caused no cytotoxic effects on lung cancer H460 and A549 cells, ovalitenone significantly suppressed anchorage-independent growth, CSC-like phenotypes, colony formation, and the ability of the cancer to migrate and invade cells. The anti-migration activity was confirmed by the reduction of filopodia in the cells treated with ovalitenone. Interestingly, we found that ovalitenone could significantly decrease the levels of N-cadherin, snail, and slug, while it increased E-cadherin, indicating EMT suppression. Additionally, the regulatory signaling of focal adhesion kinase (FAK), ATP-dependent tyrosine kinase (AKT), the mammalian target of rapamycin (mTOR), and cell division cycle 42 (Cdc42) was suppressed by ovalitenone. Conclusions: The results suggest that ovalitenone suppresses EMT via suppression of the AKT/mTOR signaling pathway. In addition, ovalitenone exhibited potential for the suppression of CSC phenotypes. These data reveal the anti-metastasis potential of the compound and support the development of ovalitenone treatment for lung cancer therapy.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yang Ke ◽  
Weiyong Zhao ◽  
Jie Xiong ◽  
Rubo Cao

MicroRNAs (miRNAs) have been implied to play crucial roles for epithelial-to-mesenchymal transition (EMT) of non-small-cell lung cancer cells (NSCLC cells). Here we found that the expression of miR-149, downregulated in lung cancer, was inversely correlated with invasive capability and the EMT phenotype of NSCLC cells. miR-149 inhibited EMT in NSCLC cells. Furthermore, we demonstrated that miR-149 directly targeted Forkhead box M1 (FOXM1), and FOXM1 was involved in the EMT induced by TGF-β1 in A549 cells. Overexpression of FOXM1 restored EMT process inhibited by miR-149. Our work suggested that miR-149 might be an EMT suppressor in NSCLC cells.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Su Yeon Oh ◽  
Young-Hee Kang

Abstract Objectives Pulmonary fibrosis is a disease in which lung tissues become fibrous and causes severe respiratory disturbances. Various stimuli induce infiltration of macrophages to the respiratory tract. These macrophages secrete various cytokines leading to development of pulmonary fibrosis. Aesculetin, a major component of Sancho tree and Chicory, is known to have antioxidant and anti-inflammatory effects in the vascular and immune system. However, its effect on pulmonary fibrosis has been poorly understood. The current study investigated that aesculetin inhibited pulmonary fibrosis caused by infiltration of monocyte-derived macrophages. Methods To differentiate to monocyte-derived macrophages, THP-1 human mononuclear cell line was treated with 50 ng/ml phorbol myristate acetate (PMA) for 24 h. Culture conditioned media were harvested from macrophages cultured in the absence of PMA for 24 h. A549 human alveolar basal epithelial cells were cultured in the conditioned media for 24 h to induce alveolar fibrosis. Epithelial–mesenchymal transition (EMT)-associated fibrotic proteins were measured with Western blotting from A549 cell lysates. Results Aesculetin at the concentrations of 1–20 μM did not show any toxicity of A549 cells, evidence by MTT assay. When A549 cells were treated with conditioned media from monocyte-derived macrophages, the expression of mesenchymal fibrotic proteins of α-smooth muscle actin and fibronectin was highly enhanced. In contrast, ≥10 μM aesculetin inhibited the induction of these proteins of A549 cells. The expression of E-cadherin and Zonula occludens-1 was reduced in cells supplemented with conditioned media, while aesculetin promoted these epithelial phenotypic proteins in conditioned media-exposed alveolar cells. Conclusions These results demonstrate that aesculetin may ameliorate EMT-associated alveolar fibrosis caused by monocyte-derived macrophages infiltrated into the alveoli. Therefore, Aesculetin maybe a promising agent treating progressive pulmonary disorders owing to pulmonary inflammation. Funding Sources This work (Grants No. C0501612) was supported by project for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Ministry of SMEs and Startups in 20.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Rebecca Dunmore ◽  
Alan M. Carruthers ◽  
Matthew J. Bell ◽  
Huilan Zhang ◽  
Cory M. Hogaboam ◽  
...  

Epithelial injury has been implicated as a driving factor for the pathogenesis of idiopathic pulmonary fibrosis (IPF). In this study we investigated changes in epithelial and mesenchymal markers in experimental models of fibrosis and associated this with IPF. TGFβ1 induced an epithelial to mesenchymal transition (EMT) phenotype in A549 cells and normal human bronchial epithelial cells, with A549 cells exhibiting a more profound transition to a mesenchymal phenotype. TGFβ1 overexpression in the lungs of mice resulted in an early increase in mesenchymal cell markers and apoptotic genes that preceded collagen deposition, suggesting an early epithelial injury triggers the downstream fibrotic response. In contrast, bleomycin had a gradual increase in mesenchymal cell marker and a decrease in E-cadherin expression that correlated with collagen protein deposition. Finally, we compared normal healthy lung tissue with surgical lung biopsies from IPF patients and observed alterations in epithelial and mesenchymal cell markers, as well as an increase in the apoptotic marker GSK3β. Interestingly, the mesenchymal changes were more profound in rapidly progressive patients in comparison to IPF patients with slowing progressing disease. In summary, this study provides evidence of alterations in epithelial and mesenchymal markers in experimental models of lung fibrosis and how these findings are relevant to clinical disease.


Author(s):  
Weikang Wang ◽  
Jianhua Xing

ABSTRACTA problem ubiquitous in almost all scientific areas is escape from a metastable state, or relaxation from one stationary distribution to a new one1. More than a century of studies lead to celebrated theoretical and computational developments such as the transition state theory and reactive flux formulation. Modern transition path sampling and transition path theory focus on an ensemble of trajectories that connect the initial and final states in a state space2, 3. However, it is generally unfeasible to experimentally observe these trajectories in multiple dimensions and compare to theoretical results. Here we report and analyze single cell trajectories of human A549 cells undergoing TGF-β induced epithelial-to-mesenchymal transition (EMT) in a combined morphology and protein texture space obtained through time lapse imaging. From the trajectories we identify parallel reaction paths with corresponding reaction coordinates and quasi-potentials. Studying cell phenotypic transition dynamics will provide testing grounds for nonequilibrium reaction rate theories.


2019 ◽  
Vol 20 (4) ◽  
pp. 800 ◽  
Author(s):  
Mohd Farhan ◽  
Arshi Malik ◽  
Mohammad Ullah ◽  
Sarah Afaq ◽  
Mohd Faisal ◽  
...  

Garcinol, a dietary factor obtained from Garcinia indica, modulates several key cellular signaling pathways as well as the expression of miRNAs. Acquired resistance to standard therapies, such as erlotinib and cisplatin, is a hallmark of non-small cell lung cancer (NSCLC) cells that often involves miRNA-regulated epithelial-to-mesenchymal transition (EMT). We used A549 cells that were exposed to transforming growth factor beta 1 (TGF-β1), resulting in A549M cells with mesenchymal and drug resistant phenotype, and report that garcinol sensitized resistant cells with mesenchymal phenotype to erlotinib as well as cisplatin with significant decrease in their IC50 values. It also potentiated the apoptosis-inducing activity of erlotinib in A549M and the endogenously mesenchymal H1299 NSCLC cells. Further, garcinol significantly upregulated several key EMT-regulating miRNAs, such as miR-200b, miR-205, miR-218, and let-7c. Antagonizing miRNAs, through anti-miRNA transfections, attenuated the EMT-modulating activity of garcinol, as determined by mRNA expression of EMT markers, E-cadherin, vimentin, and Zinc Finger E-Box Binding Homeobox 1 (ZEB1). This further led to repression of erlotinib as well as cisplatin sensitization, thus establishing the mechanistic role of miRNAs, particularly miR-200c and let-7c, in garcinol-mediated reversal of EMT and the resulting sensitization of NSCLC cells to standard therapies.


2020 ◽  
pp. 194589242093981 ◽  
Author(s):  
Ting Zhang ◽  
Yong Zhou ◽  
Bo You ◽  
Yiwen You ◽  
Yongbing Yan ◽  
...  

Background Epithelial-to-Mesenchymal Transition (EMT) is considered as a crucial event in disease development and dysregulation of microRNAs (miRNAs) is involved in the regulation of EMT in various human diseases. Emerging evidences congregated over the years have demonstrated that miR-30a-5p was decreased in diseases and its overexpression inhibited the process of diseases via attenuating EMT. Although aberrant expression of miRNAs and occurrence of EMT were previously reported in Nasal Polyps (NPs), the role of miR-30a-5p in EMT of NPs is still remains unclear. Objective The purpose of our present study was to explore the expression and potential function of miR-30a-5p in EMT of NPs. Methods The expression of miR-30a-5p and mRNA expression level were detected by quantitative real-time PCR (qRT-PCR) in transforming growth factor β1 (TGF-β1) - induced EMT model and NPs patients. Western Blot (WB) and immunohistochemistry (IHC) were performed to evaluate the protein expression level of EMT markers. The cells mobility was assessed by Wound-Healing assay. Luciferase reporter assay was utilized to verify the relationship between Cyclin-dependent kinase 6 (CDK6) and miR-30a-5p. Results Firstly, we observed that miR-30a-5p was down-regulated notably, accompanying with the alteration of EMT markers expression in NPs tissues and EMT model induced by TGF-β1 in primary Human Nasal Epithelial Cells (pHNECs) and A549 cells in vitro. Moreover, the functional assays demonstrated that overexpression of miR-30a-5p significantly inhibited EMT and cells mobility. Subsequently, CDK6 was validated as a direct target of miR-30a-5p. Finally, we performed the rescue experiments indicating that overexpression of CDK6 eliminated the suppressive effects of miR-30a-5p in TGF-β1-induced EMT in pHNECs and A549 cells. Conclusion Taken together, our results suggested that EMT was involved in NPs, and overexpression of miR-30a-5p could attenuate EMT via repressing the expression of the CDK6 in pHNECs and A549 cells.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jing Huang ◽  
Siyuan Chang ◽  
Yabin Lu ◽  
Jing Wang ◽  
Yang Si ◽  
...  

Abstract Background Increased cell mobility is a signature when tumor cells undergo epithelial-to-mesenchymal transition. TGF-β is a key stimulating factor to promote the transcription of a variety of downstream genes to accelerate cancer progression and metastasis, including osteopontin (OPN) which exists in several functional forms as different splicing variants. In non-small cell lung cancer cells, although increased total OPN expression was observed under various EMT conditions, the exact constitution and the underlining mechanism towards the generation of such OPN splicing isoforms was poorly understood. Methods We investigated the possible mechanisms of osteopontin splicing variant and its role in EMT and cancer metastasis using NSCLC cell line and cell and molecular biology techniques. Results In this study, we determined that OPNc, an exon 4 excluded shorter form of Opn gene products, appeared to be more potent to promote cell invasion. The expression of OPNc was selectively increased to higher abundance during EMT following TGF-β induction. The switching from OPNa to OPNc could be enhanced by RUNX2 (a transcription factor that recognizes the Opn gene promoter) overexpression, but appeared to be strictly in a HDAC dependent manner in A549 cells. The results suggested the increase of minor splicing variant of OPNc required both (1) the enhanced transcription from its coding gene driven by specific transcription factors; and (2) the simultaneous modulation or fluctuation of the coupled splicing process that depends to selective classed of epigenetic regulators, predominately HDAC family members. Conclusion Our study not only emphasized the importance of splicing variant for its role in EMT and cancer metastasis, but also helped to understand the possible mechanisms of the epigenetic controls for defining the levels and kinetic of gene splicing isoforms and their generations.


Sign in / Sign up

Export Citation Format

Share Document