scholarly journals An Assessment of Epithelial and Mesenchymal Phenotypes in Experimental and Clinical Pulmonary Fibrosis

2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Rebecca Dunmore ◽  
Alan M. Carruthers ◽  
Matthew J. Bell ◽  
Huilan Zhang ◽  
Cory M. Hogaboam ◽  
...  

Epithelial injury has been implicated as a driving factor for the pathogenesis of idiopathic pulmonary fibrosis (IPF). In this study we investigated changes in epithelial and mesenchymal markers in experimental models of fibrosis and associated this with IPF. TGFβ1 induced an epithelial to mesenchymal transition (EMT) phenotype in A549 cells and normal human bronchial epithelial cells, with A549 cells exhibiting a more profound transition to a mesenchymal phenotype. TGFβ1 overexpression in the lungs of mice resulted in an early increase in mesenchymal cell markers and apoptotic genes that preceded collagen deposition, suggesting an early epithelial injury triggers the downstream fibrotic response. In contrast, bleomycin had a gradual increase in mesenchymal cell marker and a decrease in E-cadherin expression that correlated with collagen protein deposition. Finally, we compared normal healthy lung tissue with surgical lung biopsies from IPF patients and observed alterations in epithelial and mesenchymal cell markers, as well as an increase in the apoptotic marker GSK3β. Interestingly, the mesenchymal changes were more profound in rapidly progressive patients in comparison to IPF patients with slowing progressing disease. In summary, this study provides evidence of alterations in epithelial and mesenchymal markers in experimental models of lung fibrosis and how these findings are relevant to clinical disease.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Su Yeon Oh ◽  
Young-Hee Kang

Abstract Objectives Pulmonary fibrosis is a disease in which lung tissues become fibrous and causes severe respiratory disturbances. Various stimuli induce infiltration of macrophages to the respiratory tract. These macrophages secrete various cytokines leading to development of pulmonary fibrosis. Aesculetin, a major component of Sancho tree and Chicory, is known to have antioxidant and anti-inflammatory effects in the vascular and immune system. However, its effect on pulmonary fibrosis has been poorly understood. The current study investigated that aesculetin inhibited pulmonary fibrosis caused by infiltration of monocyte-derived macrophages. Methods To differentiate to monocyte-derived macrophages, THP-1 human mononuclear cell line was treated with 50 ng/ml phorbol myristate acetate (PMA) for 24 h. Culture conditioned media were harvested from macrophages cultured in the absence of PMA for 24 h. A549 human alveolar basal epithelial cells were cultured in the conditioned media for 24 h to induce alveolar fibrosis. Epithelial–mesenchymal transition (EMT)-associated fibrotic proteins were measured with Western blotting from A549 cell lysates. Results Aesculetin at the concentrations of 1–20 μM did not show any toxicity of A549 cells, evidence by MTT assay. When A549 cells were treated with conditioned media from monocyte-derived macrophages, the expression of mesenchymal fibrotic proteins of α-smooth muscle actin and fibronectin was highly enhanced. In contrast, ≥10 μM aesculetin inhibited the induction of these proteins of A549 cells. The expression of E-cadherin and Zonula occludens-1 was reduced in cells supplemented with conditioned media, while aesculetin promoted these epithelial phenotypic proteins in conditioned media-exposed alveolar cells. Conclusions These results demonstrate that aesculetin may ameliorate EMT-associated alveolar fibrosis caused by monocyte-derived macrophages infiltrated into the alveoli. Therefore, Aesculetin maybe a promising agent treating progressive pulmonary disorders owing to pulmonary inflammation. Funding Sources This work (Grants No. C0501612) was supported by project for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Ministry of SMEs and Startups in 20.


2020 ◽  
Author(s):  
Petra Khan ◽  
Julien Roux ◽  
Sabrina Blumer ◽  
Lei Fang ◽  
Spasenija Savic ◽  
...  

ABSTRACTRationaleIn idiopathic pulmonary fibrosis (IPF) atypical epithelial cells are present in the alveolar compartment. Their origin and contribution to IPF pathogenesis is unknown. We recently cultured a distinct population of cells, which readily grew from fibrotic lung tissue, but only rarely from non-fibrotic tissue. Here we aimed to characterize these fibrosis-enriched cells and determine transcriptomic differences between cells derived from IPF and patients with other interstitial lung diseases (ILD).MethodsCells were cultured from peripheral lung tissue of ILD patients and analysed by bulk or single cell RNA sequencing (scRNA-seq), TaqMan-PCR, immunofluorescence (IF), immunoblotting or electron microscopy (EM).ResultsscRNA-seq demonstrated an overall homogeneity and epithelial origin of the cells. The majority of cells expressed basal cell markers (Cytokeratin (KRT) 5 and 17, TP63), of which a fraction co-expressed mesenchymal cell markers (VIM, FN1, CDH2), alveolar (SLC34A2, ABCA3, LPCAT1, EMP2, HOPX) and/or secretory epithelial cell markers (SCGB1A1, MUC4). Interestingly, most of the cells showed closest transcriptomic similarity to recently described aberrant basal-like cells. Cells derived from IPF versus other ILD patients revealed significant transcriptomic differences with an up-regulation of fibrosis-associated and a down-regulation of inflammatory pathways in IPF cells.ConclusionWe here confirm the presence of aberrant basal-like cells in fibrotic lung tissue and, importantly, are the first to describe their in vitro characteristics and a way of culturing these cells in vitro. Cultured basal-like cells co-express epithelial and mesenchymal markers, suggesting a partial epithelial to mesenchymal transition (EMT). A subset of cells co-express alveolar, ciliated or secretory epithelial cell markers, possibly indicating differentiation towards these cell linages. Furthermore, cultured basal-like cells display a disease-specific transcriptome, possibly induced by their specific microenvironment. Our findings will contribute to a better understanding of the cells origin and their potential contribution to IPF pathogenesis.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Minrui Liang ◽  
Jiucun Wang ◽  
Haiyan Chu ◽  
Xiaoxia Zhu ◽  
Hang He ◽  
...  

Pulmonary fibrosis is a progressive and fatal fibrotic disease of the lungs with unclear etiology. Recent insight has suggested that early injury/inflammation of alveolar epithelial cells could lead to dysregulation of tissue repair driven by multiple cytokines. Although dysregulation of interleukin- (IL-) 22 is involved in various pulmonary pathophysiological processes, the role of IL-22 in fibrotic lung diseases is still unclear and needs to be further addressed. Here we investigated the effect of IL-22 on alveolar epithelial cells in the bleomycin- (BLM-) induced pulmonary fibrosis. BLM-treated mice showed significantly decreased level of IL-22 in the lung. IL-22 producedγδT cells were also decreased significantly both in the tissues of lungs and spleens. Administration of recombinant human IL-22 to alveolar epithelial cell line A549 cells ameliorated epithelial to mesenchymal transition (EMT) and partially reversed the impaired cell viability induced by BLM. Furthermore, blockage of IL-22 deteriorated pulmonary fibrosis, with elevated EMT marker (α-smooth muscle actin (α-SMA)) and overactivated Smad2. Our results indicate that IL-22 may play a protective role in the development of BLM-induced pulmonary fibrosis and may suggest IL-22 as a novel immunotherapy tool in treating pulmonary fibrosis.


2021 ◽  
Vol 9 (7) ◽  
pp. 1435
Author(s):  
Hisako Kushima ◽  
Toshiyuki Tsunoda ◽  
Taichi Matsumoto ◽  
Yoshiaki Kinoshita ◽  
Koichi Izumikawa ◽  
...  

Background/Aim: Aspergillus is often detected in respiratory samples from patients with chronic respiratory diseases, including pulmonary fibrosis, suggesting that it can easily colonize the airways. To determine the role of Aspergillus colonization in pulmonary fibrosis, we cultured human lung epithelial A549 cells or murine embryo fibroblast NIH/3T3 cells with Aspergillus conidia in 3D floating culture representing the microenvironment. Materials and Methods: Cells were cultured in two-dimensional (2D) and three-dimensional floating (3DF) culture with heat-inactivated Aspergillus fumigatus (AF) 293 conidia at an effector-to-target cell ratio of 1:10 (early-phase model) and 1:100 (colonization model), and RNA-sequencing and Western blots (WB) were performed. Results: AF293 conidia reduced A549 cell growth in 2D and 3DF cultures and induced apoptosis in A549 spheroids in 3DF culture. RNA-sequencing revealed the increased expression of genes associated with interferon-mediated antiviral responses including MX dymamin-like GTPase 1 (MX1). Interestingly, the decreased expression of genes associated with the cell cycle was observed with a high concentration of AF293 conidia. WB revealed that epithelial-mesenchymal transition was not involved. Notably, AF293 conidia increased NIH/3T3 growth only in 3DF culture without inducing an apoptotic reaction. RNA-sequencing revealed the increased expression of genes associated with interferon signalling, including MX2; however, the decreased expression of genes associated with the cell cycle was not observed. Conclusions: AF affects both apoptosis of epithelial cells and the growth of fibroblasts. A deeper understanding of the detailed mechanisms underlying Aspergillus-mediated signaling pathway in epithelial cells and fibroblasts will help us to understand the lung microenvironment.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 638
Author(s):  
Kittipong Sanookpan ◽  
Nongyao Nonpanya ◽  
Boonchoo Sritularak ◽  
Pithi Chanvorachote

Cancer metastasis is the major cause of about 90% of cancer deaths. As epithelial-to-mesenchymal transition (EMT) is known for potentiating metastasis, this study aimed to elucidate the effect of ovalitenone on the suppression of EMT and metastasis-related behaviors, including cell movement and growth under detached conditions, and cancer stem cells (CSCs), of lung cancer cells. Methods: Cell viability and cell proliferation were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-liumbromide (MTT) and colony formation assays. Cell migration and invasion were analyzed using a wound-healing assay and Boyden chamber assay, respectively. Anchorage-independent cell growth was determined. Cell protrusions (filopodia) were detected by phalloidin-rhodamine staining. Cancer stem cell phenotypes were assessed by spheroid formation. The proteins involved in cell migration and EMT were evaluated by Western blot analysis and immunofluorescence staining. Results: Ovalitenone was used at concentrations of 0–200 μM. While it caused no cytotoxic effects on lung cancer H460 and A549 cells, ovalitenone significantly suppressed anchorage-independent growth, CSC-like phenotypes, colony formation, and the ability of the cancer to migrate and invade cells. The anti-migration activity was confirmed by the reduction of filopodia in the cells treated with ovalitenone. Interestingly, we found that ovalitenone could significantly decrease the levels of N-cadherin, snail, and slug, while it increased E-cadherin, indicating EMT suppression. Additionally, the regulatory signaling of focal adhesion kinase (FAK), ATP-dependent tyrosine kinase (AKT), the mammalian target of rapamycin (mTOR), and cell division cycle 42 (Cdc42) was suppressed by ovalitenone. Conclusions: The results suggest that ovalitenone suppresses EMT via suppression of the AKT/mTOR signaling pathway. In addition, ovalitenone exhibited potential for the suppression of CSC phenotypes. These data reveal the anti-metastasis potential of the compound and support the development of ovalitenone treatment for lung cancer therapy.


2019 ◽  
Vol 20 (14) ◽  
pp. 3492 ◽  
Author(s):  
Rabiatul Adawiyah Razali ◽  
Yogeswaran Lokanathan ◽  
Muhammad Dain Yazid ◽  
Ayu Suraya Ansari ◽  
Aminuddin Bin Saim ◽  
...  

Epithelial-mesenchymal transition (EMT) is a significant dynamic process that causes changes in the phenotype of epithelial cells, changing them from their original phenotype to the mesenchymal cell phenotype. This event can be observed during wound healing process, fibrosis and cancer. EMT-related diseases are usually caused by inflammation that eventually leads to tissue remodeling in the damaged tissue. Prolonged inflammation causes long-term EMT activation that can lead to tissue fibrosis or cancer. Due to activation of EMT by its signaling pathway, therapeutic approaches that modulate that pathway should be explored. Olea europaea (OE) is well-known for its anti-inflammatory effects and abundant beneficial active compounds. These properties are presumed to modulate EMT events. This article reviews recent evidence of the effects of OE and its active compounds on EMT events and EMT-related diseases. Following evidence from the literature, it was shown that OE could modulate TGFβ/SMAD, AKT, ERK, and Wnt/β-catenin pathways in EMT due to a potent active compound that is present therein.


2018 ◽  
Vol 16 (1) ◽  
pp. 407-414
Author(s):  
Rui-qin Li ◽  
Bai-yan Wang ◽  
Yu-wen Ding ◽  
Rui Zhang ◽  
Jun-xia Zhang ◽  
...  

AbstractThe present study explores the mechanism of resistance to pulmonary fibrosis by observing the possible effects of serum containing drugs prepared from Gua Lou Xie Bai decoction (GLXB-D) on transforming growth factor beta 1 (TGF-β1) induced Epithelial-mesenchymal transition (EMT) of A549 human alveolar epithelial cells. The inhibition rate was observed with the help of thiazolyl blue tetrazolium bromide (MTT) in 24 h and 48 h treated cells. Inverted microscope and transmission electron microscope (TEM) were used to study the changes in the morphology and ultrastructure of the cells. The expressions of E-cadherin and Vimentin were comparatively analyzed by Western blotting, while the expressions of Collagen I and III were analyzed by ELISA. The data obtained indicated that the expression of epithelial marker E-cadherin was decreased, while the expressions of EMT markers such as Vimentin and Collagen I and III were increased in 24 h after TGF-β1 induction. However, the serum containing drugs of GLXB-D were found to inhibit the TGF-β1 induced proliferation of cells, increase the expression of E-cadherin and decrease the expression of Vimentin, collagen I and III. In conclusion, the serum containing drugs of GLXB-D effectively reduced pulmonary fibrosis, mainly via the reversal of EMT induction by TGF-β1. Thus, it can be considered as a potential candidate for the development of better treatment methods for pulmonary fibrosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yingying Yang ◽  
Lu Ding ◽  
Tingting Bao ◽  
Yaxin Li ◽  
Jing Ma ◽  
...  

Pulmonary fibrosis (PF) is one of the pathologic changes in COVID-19 patients in convalescence, and it is also a potential long-term sequela in severe COVID-19 patients. Qimai Feiluoping decoction (QM) is a traditional Chinese medicine formula recommended in the Chinese national medical program for COVID-19 convalescent patients, and PF is one of its indications. Through clinical observation, QM was found to improve the clinical symptoms and pulmonary function and reduce the degree of PF of COVID-19 convalescent patients. To further explore the pharmacological mechanisms and possible active components of QM in anti-PF effect, UHPLC/Q-TOF-MS was used to analyze the composition of the QM extract and the active components that can be absorbed into the blood, leading to the identification of 56 chemical compounds and 10 active components. Then, network pharmacology was used to predict the potential mechanisms and targets of QM; it predicted that QM exerts its anti-PF effects via the regulation of the epithelial–mesenchymal transition (EMT), extracellular matrix (ECM) degradation, and TGF-β signaling pathway. Finally, TGF-β1–induced A549 cells were used to verify and explore the pharmacological effects of QM and found that QM could inhibit the proliferation of TGF-β1–induced A549 cells, attenuate EMT, and promote ECM degradation by inhibiting the TGF-β/Smad3 pathway.


Sign in / Sign up

Export Citation Format

Share Document