Antitumour Immune Response and Cancer Vaccination: The Critical Role of Dendritic Cells

1999 ◽  
Vol 15 (4) ◽  
pp. 321-326 ◽  
Author(s):  
Serge Kochman ◽  
Jacky Bernard
Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 323 ◽  
Author(s):  
Guoying Wang ◽  
Xianghui Li ◽  
Lei Zhang ◽  
Abualgasim Elgaili Abdalla ◽  
Tieshan Teng ◽  
...  

Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2999
Author(s):  
Deborah Reynaud ◽  
Roland Abi Nahed ◽  
Nicolas Lemaitre ◽  
Pierre-Adrien Bolze ◽  
Wael Traboulsi ◽  
...  

The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.


2020 ◽  
Vol 1 (9) ◽  
pp. 64-71
Author(s):  
E. A. Klimov ◽  
◽  
E. K. Novitskaya ◽  
S. N. Koval’chuk ◽  
◽  
...  

Intercellular adhesion molecule CD209 (DC-SIGN) is a membrane C-type lectin receptor expressed on the surface of dendritic cells and macrophages. CD209 plays an important role in innate immunity. Many studies have shown the possibility of interaction of the CD209 molecule with a number of dangerous pathogens of humans and animals. This review summarizes information on the structure of the CD209 gene and its product, describes the role of the CD209 protein in the immune response, in the migration of dendritic cells from the blood to the tissue, and their interaction with neutrophils. The currently known signaling pathway of activation through the CD209 inflammatory response is presented. The role of CD209 as an endocytic antigen receptor and the participation of the protein in immune evasion of pathogens are discussed. The mechanisms known to date for the development of infections caused by pathogens of various nature in animals are described.


2020 ◽  
Vol 9 (8) ◽  
pp. 2661
Author(s):  
Rachel Abrahem ◽  
Emerald Chiang ◽  
Joseph Haquang ◽  
Amy Nham ◽  
Yu-Sam Ting ◽  
...  

Dendritic cells are the principal antigen-presenting cells (APCs) in the host defense mechanism. An altered dendritic cell response increases the risk of susceptibility of infections, such as Mycobacterium tuberculosis (M. tb), and the survival of the human immunodeficiency virus (HIV). The altered response of dendritic cells leads to decreased activity of T-helper-1 (Th1), Th2, Regulatory T cells (Tregs), and Th17 cells in tuberculosis (TB) infections due to a diminishment of cytokine release from these APCs, while HIV infection leads to DC maturation, allowing DCs to migrate to lymph nodes and the sub-mucosa where they then transfer HIV to CD4 T cells, although there is controversy around this topic. Increases in the levels of the antioxidant glutathione (GSH) plays a critical role in maintaining dendritic cell redox homeostasis, leading to an adequate immune response with sufficient cytokine release and a subsequent robust immune response. Thus, an understanding of the intricate pathways involved in the dendritic cell response are needed to prevent co-infections and co-morbidities in individuals with TB and HIV.


2010 ◽  
Vol 184 (7) ◽  
pp. 3341-3345 ◽  
Author(s):  
Katsuaki Hoshino ◽  
Izumi Sasaki ◽  
Takahiro Sugiyama ◽  
Takahiro Yano ◽  
Chihiro Yamazaki ◽  
...  

2016 ◽  
Vol 10 (4) ◽  
pp. 901-911 ◽  
Author(s):  
S Joo ◽  
Y Fukuyama ◽  
E J Park ◽  
Y Yuki ◽  
Y Kurashima ◽  
...  

2008 ◽  
Vol 205 (6) ◽  
pp. 1277-1283 ◽  
Author(s):  
George Plitas ◽  
Bryan M. Burt ◽  
Hoang M. Nguyen ◽  
Zubin M. Bamboat ◽  
Ronald P. DeMatteo

The high rate of mortality in patients with sepsis results from an inappropriately amplified systemic inflammatory response to infection. Toll-like receptors (TLRs) are important for the activation of innate immunity against microbial pathogens. We demonstrate a critical role of TLR9 in the dysregulated immune response and death associated with sepsis. Compared with wild-type (WT) mice, TLR9−/− mice exhibited lower serum inflammatory cytokine levels, higher bacterial clearance, and greater survival after experimental peritonitis induced by cecal ligation and puncture (CLP). Protection of TLR9−/− mice after CLP was associated with a greater number of peritoneal dendritic cells (DCs) and granulocytes than in WT controls. Adoptive transfer of TLR9−/− DCs was sufficient to protect WT mice from CLP and increased the influx of peritoneal granulocytes. Subsequent experiments with a depleting antibody revealed that granulocytes were required for survival in TLR9−/− mice. Remarkably, a single injection of an inhibitory CpG sequence that blocks TLR9 protected WT mice, even when administered as late as 12 h after CLP. Our findings demonstrate that the detrimental immune response to bacterial sepsis occurs via TLR9 stimulation. TLR9 blockade is a potential strategy for the treatment of human sepsis.


Sign in / Sign up

Export Citation Format

Share Document