scholarly journals Genome-wide identification and characterization of the 14–3-3 family in Vitis vinifera L. during berry development and cold- and heat-stress response

BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Cheng Cheng ◽  
Yi Wang ◽  
Fengmei Chai ◽  
Shaohua Li ◽  
Haiping Xin ◽  
...  
3 Biotech ◽  
2019 ◽  
Vol 9 (5) ◽  
Author(s):  
Zahra Shirazi ◽  
Amin Abedi ◽  
Mojtaba Kordrostami ◽  
David J. Burritt ◽  
Mohammad Anwar Hossain

Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 149
Author(s):  
Chao Gong ◽  
Qiangqiang Pang ◽  
Zhiliang Li ◽  
Zhenxing Li ◽  
Riyuan Chen ◽  
...  

Under high temperature stress, a large number of proteins in plant cells will be denatured and inactivated. Meanwhile Hsfs and Hsps will be quickly induced to remove denatured proteins, so as to avoid programmed cell death, thus enhancing the thermotolerance of plants. Here, a comprehensive identification and analysis of the Hsf and Hsp gene families in eggplant under heat stress was performed. A total of 24 Hsf-like genes and 117 Hsp-like genes were identified from the eggplant genome using the interolog from Arabidopsis. The gene structure and motif composition of Hsf and Hsp genes were relatively conserved in each subfamily in eggplant. RNA-seq data and qRT-PCR analysis showed that the expressions of most eggplant Hsf and Hsp genes were increased upon exposure to heat stress, especially in thermotolerant line. The comprehensive analysis indicated that different sets of SmHsps genes were involved downstream of particular SmHsfs genes. These results provided a basis for revealing the roles of SmHsps and SmHsp for thermotolerance in eggplant, which may potentially be useful for understanding the thermotolerance mechanism involving SmHsps and SmHsp in eggplant.


Gene ◽  
2014 ◽  
Vol 533 (2) ◽  
pp. 500-507 ◽  
Author(s):  
Kusum Mehla ◽  
Ankit Magotra ◽  
Jyoti Choudhary ◽  
A.K. Singh ◽  
A.K. Mohanty ◽  
...  

2019 ◽  
Vol 102 (9) ◽  
pp. 8148-8158 ◽  
Author(s):  
Pamela I. Otto ◽  
Simone E.F. Guimarães ◽  
Lucas L. Verardo ◽  
Ana Luísa S. Azevedo ◽  
Jeremie Vandenplas ◽  
...  

2020 ◽  
Author(s):  
Yang Zhao ◽  
Qiye Wei ◽  
Tianci Chen ◽  
Lijuan Xu ◽  
Jing Liu ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are a class of small non-coding RNAs, which have been demonstrated to play essential roles in plant growth and development, and in responses to abiotic stress. Heat stress is one of the most serious stresses that affecting crop yield and quality, however, the related regulatory mechanisms of miRNAs remains poorly understanding in maize. Results: In this study, a total of 340 miRNAs, including 215 known and 125 novel members, were identified from maize seedlings under heat stress (MH) and control conditions (MC) using high-throughput sequencing approach. The 215 known miRNAs can be further divided into 40 different families, and 21-nt miRNAs were found to be most abundant among the known miRNAs. Thirty-five miRNAs, including 26 known and 9 novel members, were significantly different expressed between MC and MH libraries. Furthermore, 174 target genes were predicted to be cleaved by 115 miRNAs using degradome sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for these targets to explore the biological function and pathways involved. Based on the relationships of miRNAs, target genes and the enriched results, a regulatory network was constructed for the miRNAs and their respective target genes, and 16 significantly differently expressed miRNAs (DEMs) were involved in the network. Conclusions: The results revealed novel insights into the roles of miRNAs in heat stress response and provided a useful foundation for understanding the regulatory mechanisms of heat-responsive miRNAs in maize.


1998 ◽  
Vol 274 (6) ◽  
pp. F1029-F1036 ◽  
Author(s):  
Karen M. Gaudio ◽  
Gunilla Thulin ◽  
Andrea Mann ◽  
Michael Kashgarian ◽  
Norman J. Siegel

The stress response was studied in suspensions of tubules from immature (IT) and mature (MT) rats after noninjury, heat, oxygen, and anoxia. Under all conditions, IT exhibited more exuberant activation of heat shock transcription factor (HSF) than MT. Characterization of activated HSF in immature cortex revealed HSF1. Also, 2 h after each condition, heat shock protein-72 (HSP-72) mRNA was twofold in IT. As the metabolic response to 45 min of anoxia, 20-min reoxygenation was assessed by measuring O2 consumption (O2C). Basal O2C was manipulated with ouabain, nystatin, and carbonylcyanide p-chloromethyoxyphenylhydrazone (CCCP). Basal O2C in IT were one-half the value of MT. After anoxia, basal O2C was reduced by a greater degree in MT. Ouabain reduced O2C to half the basal value in both noninjured and anoxic groups. Basal O2C was significantly stimulated by nystatin but not to the same level following anoxia in MT and IT. Basal O2C was also stimulated by CCCP, but after anoxia, CCCP O2C was significantly less in MT with no decrease in IT, suggesting mitochondria are better preserved in IT. Also, O2C devoted to nontransport activity was better maintained in IT.


Sign in / Sign up

Export Citation Format

Share Document