scholarly journals Dynamics of mobile genetic elements of Listeria monocytogenes persisting in ready-to-eat seafood processing plants in France

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Federica Palma ◽  
Thomas Brauge ◽  
Nicolas Radomski ◽  
Ludovic Mallet ◽  
Arnaud Felten ◽  
...  
2013 ◽  
Vol 76 (7) ◽  
pp. 1279-1282 ◽  
Author(s):  
WALID Q. ALALI ◽  
DONALD W. SCHAFFNER

The objective of this study was to evaluate the relationship between prevalence of Listeria monocytogenes as an outcome and Listeria spp. as an explanatory variable by food products, food contact surfaces, and nonfood contact surfaces in seafood processing plants by using peer-reviewed published data. Nine sets of prevalence data of L. monocytogenes and Listeria spp. were collected from published studies and used for the analyses. Based on our analysis, the relationship between L. monocytogenes prevalence and Listeria spp. prevalence in food products (incoming raw materials and finish products) was significant (P = 0.04) with (low) R2 = 0.36. Furthermore, Listeria spp. were not a good indicator for L. monocytogenes when testing food contact surfaces (R2= 0.10). Listeria spp. were a good indicator for L. monocytogenes only on nonfood contact surfaces (R2= 0.90). On the other hand, the presence of Listeria spp. on food contact surfaces (R2= 0.002) and nonfood contact surfaces (R2= 0.03) was not a good indicator for L. monocytogenes presence in food products. In general, prevalence of Listeria spp. does not seem to be a good indicator for L. monocytogenes prevalence in seafood processing plants.


2013 ◽  
Vol 80 (4) ◽  
pp. 1489-1497 ◽  
Author(s):  
Cristina D. Cruz ◽  
Andrew R. Pitman ◽  
Sally A. Harrow ◽  
Graham C. Fletcher

ABSTRACTListeriosis is caused by the food-borne pathogenListeria monocytogenes, which can be found in seafood and processing plants. To evaluate the risk to human health associated with seafood production in New Zealand, multi-virulence-locus sequence typing (MVLST) was used to define the sequence types (STs) of 31L. monocytogenesisolates collected from seafood-processing plants, 15 from processed foods, and 6 from human listeriosis cases. The STs of these isolates were then compared with those from a collection of seafood isolates and epidemic strains from overseas. A total of 17 STs from New Zealand clustered into two lineages: seafood-related isolates in lineages I and II and all human isolates in lineage II. None of the New Zealand STs matched previously described STs from other countries. Isolates (belonging to ST01-N and ST03-N) from mussels and their processing environments, however, were identical to those of sporadic listeriosis cases in New Zealand. ST03-N isolates (16 from mussel-processing environments, 2 from humans, and 1 from a mussel) contained aninlApremature stop codon (PMSC) mutation. Therefore, the levels of invasiveness of 22 isolates from ST03-N and the three other common STs were compared using human intestinal epithelial Caco-2 cell lines. STs carryinginlAPMSCs, including ST03-N isolates associated with clinical cases, had a low invasion phenotype. The close relatedness of some clinical and environmental strains, as revealed by identical MVLST profiles, suggests that local and persistent environmental strains in seafood-processing environments pose a potential health risk. Furthermore, a PMSC ininlAdoes not appear to giveL. monocytogenesa noninvasive profile.


2021 ◽  
Author(s):  
Hanna Castro ◽  
Francois Douillard ◽  
Hannu Korkeala ◽  
Miia Lindström

Listeria monocytogenes is a food-borne pathogen and a resilient environmental saprophyte. Dairy farms are a reservoir of L. monocytogenes and strains can persist on farms for years. Here, we sequenced the genomes of 250 L. monocytogenes isolates to investigate the persistence and mobile genetic elements of Listeria inhabiting dairy farms. We found that prophages and other mobile elements were significantly more numerous among persistent than sporadically occurring strains. We identified a remarkable diversity of mobile elements among farm isolates, including a novel group of plasmids infecting hypervirulent subtypes of L. monocytogenes and occasionally carrying biocide resistance determinants bcrABC or qacH. Resistance genes against bacitracin, arsenic and cadmium were significantly more prevalent among persistent than sporadic strains. Several of the mobile elements in Listeria were identical to the mobile elements of Enterococci, indicative of recent transfer between these genera. Finally, we demonstrated that the CRISPR-cas IIa system and a type II restriction-modification system were negatively associated with persistence on farms. Our findings suggest that mobile elements support the persistence of L. monocytogenes on dairy farms and that L. monocytogenes inhabiting the agroecosystem is a potential reservoir of mobile elements harbouring resistance genes against antimicrobials, biocides, and heavy metals.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Lindsay Liang ◽  
Saravanamuttu Gnaneshan ◽  
Rafael A. Garduño ◽  
Gustavo V. Mallo

Mobile genetic elements in bacteria, such as plasmids, act as important vectors for the transfer of antibiotic resistance, virulence, and metal resistance genes. Here, we report the genome sequence of a new plasmid pLM-C-273, identified in a Listeria monocytogenes strain isolated from a clinical sample in Ontario, Canada.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 822
Author(s):  
Hee Jin Kwon ◽  
Zhao Chen ◽  
Peter Evans ◽  
Jianghong Meng ◽  
Yi Chen

Recently developed nanopore sequencing technologies offer a unique opportunity to rapidly close the genome and to identify complete sequences of mobile genetic elements (MGEs). In this study, 17 isolates of Listeria monocytogenes (Lm) epidemic clone II (ECII) from seven ready-to-eat meat or poultry processing facilities, not known to be associated with outbreaks, were shotgun sequenced, and among them, five isolates were further subjected to long-read sequencing. Additionally, 26 genomes of Lm ECII isolates associated with three listeriosis outbreaks in the U.S. and South Africa were obtained from the National Center for Biotechnology Information (NCBI) database and analyzed to evaluate if MGEs may be used as a high-resolution genetic marker for identifying and sourcing the origin of Lm. The analyses identified four comK prophages in 11 non-outbreak isolates from four facilities and three comK prophages in 20 isolates associated with two outbreaks that occurred in the U.S. In addition, three different plasmids were identified among 10 non-outbreak isolates and 14 outbreak isolates. Each comK prophage and plasmid was conserved among the isolates sharing it. Different prophages from different facilities or outbreaks had significant genetic variations, possibly due to horizontal gene transfer. Phylogenetic analysis showed that isolates from the same facility or the same outbreak always closely clustered. The time of most recent common ancestor of the Lm ECII isolates was estimated to be in March 1816 with the average nucleotide substitution rate of 3.1 × 10−7 substitutions per site per year. This study showed that complete MGE sequences provide a good signal to determine the genetic relatedness of Lm isolates, to identify persistence or repeated contamination that occurred within food processing environment, and to study the evolutionary history among closely related isolates.


2021 ◽  
Vol 87 (10) ◽  
Author(s):  
Jessika Nowak ◽  
Sandra B. Visnovsky ◽  
Andrew R. Pitman ◽  
Cristina D. Cruz ◽  
Jon Palmer ◽  
...  

ABSTRACT Listeria monocytogenes is a ubiquitous foodborne pathogen that results in a high rate of mortality in sensitive and immunocompromised people. Contamination of food with L. monocytogenes is thought to occur during food processing, most often as a result of the pathogen producing a biofilm that persists in the environment and acting as the source for subsequent dispersal of cells onto food. A survey of seafood-processing plants in New Zealand identified the persistent strain 15G01, which has a high capacity to form biofilms. In this study, a transposon library of L. monocytogenes 15G01 was screened for mutants with altered biofilm formation, assessed by a crystal violet assay, to identify genes involved in biofilm formation. This screen identified 36 transposants that showed a significant change in biofilm formation compared to the wild type. The insertion sites were in 27 genes, 20 of which led to decreased biofilm formation and seven to an increase. Two insertions were in intergenic regions. Annotation of the genes suggested that they are involved in diverse cellular processes, including stress response, autolysis, transporter systems, and cell wall/membrane synthesis. Analysis of the biofilms produced by the transposants using scanning electron microscopy and fluorescence microscopy showed notable differences in the structure of the biofilms compared to the wild type. In particular, inactivation of uvrB and mltD produced coccoid-shaped cells and elongated cells in long chains, respectively, and the mgtB mutant produced a unique biofilm with a sandwich structure which was reversed to the wild-type level upon magnesium addition. The mltD transposant was successfully complemented with the wild-type gene, whereas the phenotypes were not or only partially restored for the remaining mutants. IMPORTANCE The major source of contamination of food with Listeria monocytogenes is thought to be due to biofilm formation and/or persistence in food-processing plants. By establishing as a biofilm, L. monocytogenes cells become harder to eradicate due to their increased resistance to environmental threats. Understanding the genes involved in biofilm formation and their influence on biofilm structure will help identify new ways to eliminate harmful biofilms in food processing environments. To date, multiple genes have been identified as being involved in biofilm formation by L. monocytogenes; however, the exact mechanism remains unclear. This study identified four genes associated with biofilm formation by a persistent strain. Extensive microscopic analysis illustrated the effect of the disruption of mgtB, clsA, uvrB, and mltD and the influence of magnesium on the biofilm structure. The results strongly suggest an involvement in biofilm formation for the four genes and provide a basis for further studies to analyze gene regulation to assess the specific role of these biofilm-associated genes.


BMC Genomics ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 47 ◽  
Author(s):  
Carsten Kuenne ◽  
André Billion ◽  
Mobarak Abu Mraheil ◽  
Axel Strittmatter ◽  
Rolf Daniel ◽  
...  

2000 ◽  
Vol 66 (11) ◽  
pp. 4779-4784 ◽  
Author(s):  
Liv Marit Rørvik ◽  
Brit Aase ◽  
Torill Alvestad ◽  
Dominique A. Caugant

ABSTRACT To evaluate the role of seafoods in the epidemiology of human listeriosis and the role of the processing environment as a source ofListeria monocytogenes in seafood products, 305 L. monocytogenes isolates were characterized by multilocus enzyme electrophoresis using 21 genetic loci and restriction enzyme analysis of total DNA. Forty-four isolates were recovered from patients in Norway; 93 were isolated from seafoods, seafood-processing environments, and seawater from 55 different producers; and the remaining 168 isolates originated from six seafood-processing plants and one transport terminal examined in detail for L. monocytogenes. The patient isolates fell into 11 electrophoretic types, with four of them being responsible for 77% of the listeriosis cases in 1992 to 1996. Isolates from Norwegian seafoods and processing environments showed great genetic diversity, indicating that seafoods and seafood-processing environments do not offer a niche for specificL. monocytogenes strains. On the other hand, isolates from individual processing plants were genetically more homogenous, showing that plants are likely to be colonized with specific subclones ofL. monocytogenes. The isolation of identical subclones ofL. monocytogenes from both human patients and seafoods, including ready-to-eat products, suggests that such products may have been possible sources for listeriosis cases in Norway.


Sign in / Sign up

Export Citation Format

Share Document