scholarly journals Genome-wide characterization and analysis of WRKY transcription factors in Panax ginseng

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Peng Di ◽  
Ping Wang ◽  
Min Yan ◽  
Peng Han ◽  
Xinyi Huang ◽  
...  

Abstract Background Panax ginseng is a well-known medicinal plant worldwide. As an herbal medicine, ginseng is also known for its long lifecycle, which can reach several decades. WRKY proteins play regulatory roles in many aspects of biological processes in plants, such as responses to biotic or abiotic stress, plant development, and adaptation to environmental challenges. Genome-wide analyses of WRKY genes in P. ginseng have not been reported. Results In this study, 137 PgWRKY genes were identified from the ginseng genome. Phylogenetic analysis showed that the PgWRKYs could be clustered into three primary groups and five subgroups. Most of the PgWRKY gene promoters contained several kinds of hormone- and stress-related cis-regulatory elements. The expression patterns of PgWRKY genes in 14 different tissues were analyzed based on the available public RNA-seq data. The responses of the PgWRKY genes to heat, cold, salt and drought treatment were also investigated. Most of the PgWRKY genes were expressed differently after heat treatment, and expression trends changed significantly under drought and cold treatment but only slightly under salt treatment. The coexpression analysis of PgWRKY genes with the ginsenoside biosynthesis pathway genes identified 11 PgWRKYs that may have a potential regulatory role in the biosynthesis process of ginsenoside. Conclusions This work provides insights into the evolution, modulation and distribution of the WRKY gene family in ginseng and extends our knowledge of the molecular basis along with modulatory mechanisms of WRKY transcription factors in ginsenoside biosynthesis.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shutao He ◽  
Xiaomeng Hao ◽  
Shuli He ◽  
Xiaoge Hao ◽  
Xiaonan Chen

Abstract Background In recent years, much attention has been given to AP2/ERF transcription factors because they play indispensable roles in many biological processes, such as plant development and biotic and abiotic stress responses. Although AP2/ERFs have been thoroughly characterised in many plant species, the knowledge about this family in the sweet potato, which is a vital edible and medicinal crop, is still limited. In this study, a comprehensive genome-wide investigation was conducted to characterise the AP2/ERF gene family in the sweet potato. Results Here, 198 IbAP2/ERF transcription factors were obtained. Phylogenetic analysis classified the members of the IbAP2/ERF family into three groups, namely, ERF (172 members), AP2 (21 members) and RAV (5 members), which was consistent with the analysis of gene structure and conserved protein domains. The evolutionary characteristics of these IbAP2/ERF genes were systematically investigated by analysing chromosome location, conserved protein motifs and gene duplication events, indicating that the expansion of the IbAP2/ERF gene family may have been caused by tandem duplication. Furthermore, the analysis of cis-acting elements in IbAP2/ERF gene promoters implied that these genes may play crucial roles in plant growth, development and stress responses. Additionally, the available RNA-seq data and quantitative real-time PCR (qRT-PCR) were used to investigate the expression patterns of IbAP2/ERF genes during sweet potato root development as well as under multiple forms of abiotic stress, and we identified several developmental stage-specific and stress-responsive IbAP2/ERF genes. Furthermore, g59127 was differentially expressed under various stress conditions and was identified as a nuclear protein, which was in line with predicted subcellular localization results. Conclusions This study originally revealed the characteristics of the IbAP2/ERF superfamily and provides valuable resources for further evolutionary and functional investigations of IbAP2/ERF genes in the sweet potato.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Li ◽  
Keyun Lin ◽  
Shuai Zhang ◽  
Jian Wu ◽  
Yujie Fang ◽  
...  

Myeloblastosis (MYB)-related transcription factors comprise a large subfamily of the MYB family. They play significant roles in plant development and in stress responses. However, MYB-related proteins have not been comprehensively investigated in rapeseed (Brassica napus L.). In the present study, a genome-wide analysis of MYB-related transcription factors was performed in rapeseed. We identified 251 Brassica napus MYB (BnMYB)-related members, which were divided phylogenetically into five clades. Evolutionary analysis suggested that whole genome duplication and segmental duplication events have played a significant role in the expansion of BnMYB-related gene family. Selective pressure of BnMYB-related genes was estimated using the Ka/Ks ratio, which indicated that BnMYB-related genes underwent strong purifying selection during evolution. In silico analysis showed that various development-associated, phytohormone-responsive, and stress-related cis-acting regulatory elements were enriched in the promoter regions of BnMYB-related genes. Furthermore, MYB-related genes with tissue or organ-specific, stress-responsive expression patterns were identified in B. napus based on temporospatial and abiotic stress expression profiles. Among the stress-responsive MYB-related genes, BnMRD107 was strongly induced by drought stress, and was therefore selected for functional study. Rapeseed seedlings overexpressing BnMRD107 showed improved resistance to osmotic stress. Our findings not only lay a foundation for further functional characterization of BnMYB-related genes, but also provide valuable clues to determine candidate genes for future genetic improvement of B. napus.


2020 ◽  
Author(s):  
Jeky Chanwala ◽  
Suresh Satpati ◽  
Anshuman Dixit ◽  
Ajay Parida ◽  
Mrunmay Kumar Giri ◽  
...  

Abstract Background: Plants have developed various sophisticated mechanisms to cope up with climate extremes and different stress conditions, especially by involving specific transcription factors (TFs). The members of the WRKY TF family are well known for their role in plant development, phytohormone signaling and developing resistance against biotic or abiotic stresses. In this study, we performed a genome-wide screening to identify and analyze the WRKY TFs in pearl millet ( Pennisetum glaucum; PgWRKY ) , which is one of the most widely grown cereal crop in the semi-arid regions. Results: A total number of 97 putative PgWRKY proteins were identified and classified into three major Groups (I-III) based on the presence of WRKY DNA binding domain and zinc-finger motif structures. Members of Group II have been further subdivided into five subgroups (IIa-IIe) based on the phylogenetic analysis. In-silico analysis of PgWRKYs revealed the presence of various cis-regulatory elements in their promoter region like ABRE, DRE, ERE, EIRE, Dof, AUXRR, G-box, etc., suggesting their probable involvement in growth, development and stress responses of pearl millet. Chromosomal mapping evidenced uneven distribution of identified 97 PgWRKY genes across all the seven chromosomes of pearl millet. Synteny analysis of PgWRKYs established their orthologous and paralogous relationship among the WRKY gene family of Arabidopsis thaliana, Oryza sativa and Setaria italica . Gene ontology (GO) annotation functionally categorized these PgWRKYs under cellular components, molecular functions and biological processes. Further, the differential expression pattern of PgWRKY s was noticed in different tissues (leaf, stem, root) and under both drought and salt stress conditions. The expression pattern of PgWRKY33 , PgWRKY62 and PgWRKY65 indicates their probable involvement in both dehydration and salinity stress responses in pearl millet. Conclusion: Functional characterization of identified PgWRKY s can be useful in delineating their role behind the natural stress tolerance of pearl millet against harsh environmental conditions. Further, these PgWRKY s can be employed in genome editing for millet crop improvement. Keywords : Pearl millet, WRKY Transcription Factors , cis-regulatory elements, Synteny, Abiotic stress


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 393 ◽  
Author(s):  
Hongyu Guo ◽  
Yantong Zhang ◽  
Zhuo Wang ◽  
Limei Lin ◽  
Minghui Cui ◽  
...  

The WRKY transcription factors family, which participates in many physiological processes in plants, constitutes one of the largest transcription factor families. The Asterales and the Apiales are two orders of flowering plants in the superorder Asteranae. Among the members of the Asterales, globe artichoke (Cynara cardunculus var. scolymus L.), sunflower (Helianthus annuus L.), and lettuce (Lactuca sativa L.) are important economic crops worldwide. Within the Apiales, ginseng (Panax ginseng C. A. Meyer) and Panax notoginseng (Burk.) F.H. Chen are important medicinal plants, while carrot (Daucus carota subsp. carota L.) has significant economic value. Research involving genome-wide identification of WRKY transcription factors in the Asterales and the Apiales has been limited. In this study, 490 WRKY genes, 244 from three species of the Apiales and 246 from three species of the Asterales, were identified and categorized into three groups. Within each group, WRKY motif characteristics and gene structures were similar. WRKY gene promoter sequences contained light responsive elements, core regulatory elements, and 12 abiotic stress cis-acting elements. WRKY genes were evenly distributed on each chromosome. Evidence of segmental and tandem duplication events was found in all six species in the Asterales and the Apiales, with segmental duplication inferred to play a major role in WRKY gene evolution. Among the six species, we uncovered 54 syntenic gene pairs between globe artichoke and lettuce. The six species are thus relatively closely related, consistent with their traditional taxonomic placement in the Asterales. This study, based on traditional species classifications, was the first to identify WRKY transcription factors in six species from the Asteranae. Our results lay a foundation for further understanding of the role of WRKY transcription factors in species evolution and functional differentiation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ruifeng Cui ◽  
Xiaoge Wang ◽  
Waqar Afzal Malik ◽  
Xuke Lu ◽  
Xiugui Chen ◽  
...  

Abstract Background The Raffinose synthetase (RAFS) genes superfamily is critical for the synthesis of raffinose, which accumulates in plant leaves under abiotic stress. However, it remains unclear whether RAFS contributes to resistance to abiotic stress in plants, specifically in the Gossypium species. Results In this study, we identified 74 RAFS genes from G. hirsutum, G. barbadense, G. arboreum and G. raimondii by using a series of bioinformatic methods. Phylogenetic analysis showed that the RAFS gene family in the four Gossypium species could be divided into four major clades; the relatively uniform distribution of the gene number in each species ranged from 12 to 25 based on species ploidy, most likely resulting from an ancient whole-genome polyploidization. Gene motif analysis showed that the RAFS gene structure was relatively conservative. Promoter analysis for cis-regulatory elements showed that some RAFS genes might be regulated by gibberellins and abscisic acid, which might influence their expression levels. Moreover, we further examined the functions of RAFS under cold, heat, salt and drought stress conditions, based on the expression profile and co-expression network of RAFS genes in Gossypium species. Transcriptome analysis suggested that RAFS genes in clade III are highly expressed in organs such as seed, root, cotyledon, ovule and fiber, and under abiotic stress in particular, indicating the involvement of genes belonging to clade III in resistance to abiotic stress. Gene co-expressed network analysis showed that GhRFS2A-GhRFS6A, GhRFS6D, GhRFS7D and GhRFS8A-GhRFS11A were key genes, with high expression levels under salt, drought, cold and heat stress. Conclusion The findings may provide insights into the evolutionary relationships and expression patterns of RAFS genes in Gossypium species and a theoretical basis for the identification of stress resistance materials in cotton.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhixuan Du ◽  
Qitao Su ◽  
Zheng Wu ◽  
Zhou Huang ◽  
Jianzhong Bao ◽  
...  

AbstractMultidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice. In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. The rice MATE family was divided into four subfamilies based on the phylogenetic tree. Tandem repeats and fragment replication contribute to the expansion of the rice MATE gene family. Gene structure and cis-regulatory elements reveal the potential functions of MATE genes. Analysis of gene expression showed that most of MATE genes were constitutively expressed and the expression patterns of genes in different tissues were analyzed using RNA-seq. Furthermore, qRT-PCR-based analysis showed differential expression patterns in response to salt and drought stress. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 15 ◽  
Author(s):  
He Su ◽  
Yang Chu ◽  
Junqi Bai ◽  
Lu Gong ◽  
Juan Huang ◽  
...  

Herb genomics and comparative genomics provide a global platform to explore the genetics and biology of herbs at the genome level. Panax ginseng C.A. Meyer is an important medicinal plant for a variety of bioactive chemical compounds of which the biosynthesis may involve transport of a wide range of substrates mediated by oligopeptide transporters (OPT). However, information about the OPT family in the plant kingdom is still limited. Only 17 and 18 OPT genes have been characterized for Oryza sativa and Arabidopsis thaliana, respectively. Additionally, few comprehensive studies incorporating the phylogeny, gene structure, paralogs evolution, expression profiling, and co-expression network between transcription factors and OPT genes have been reported for ginseng and other species. In the present study, we performed those analyses comprehensively with both online tools and standalone tools. As a result, we identified a total of 268 non-redundant OPT genes from 12 flowering plants of which 37 were from ginseng. These OPT genes were clustered into two distinct clades in which clade-specific motif compositions were considerably conservative. The distribution of OPT paralogs was indicative of segmental duplication and subsequent structural variation. Expression patterns based on two sources of RNA-Sequence datasets suggested that some OPT genes were expressed in both an organ-specific and tissue-specific manner and might be involved in the functional development of plants. Further co-expression analysis of OPT genes and transcription factors indicated 141 positive and 11 negative links, which shows potent regulators for OPT genes. Overall, the data obtained from our study contribute to a better understanding of the complexity of the OPT gene family in ginseng and other flowering plants. This genetic resource will help improve the interpretation on mechanisms of metabolism transportation and signal transduction during plant development for Panax ginseng.


Sign in / Sign up

Export Citation Format

Share Document