scholarly journals Reconstitution of immune cell in liver and lymph node of adult- and newborn-engrafted humanized mice

2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Crystal Dykstra ◽  
Amanda J. Lee ◽  
Evan J. Lusty ◽  
Mira M. Shenouda ◽  
Mahsa Shafai ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 965
Author(s):  
Selina Hiss ◽  
Markus Eckstein ◽  
Patricia Segschneider ◽  
Konstantinos Mantsopoulos ◽  
Heinrich Iro ◽  
...  

Objectives: The aim of this study was to assess the number of tumour-infiltrating lymphocytes (TILs) and the expression of Programmed Cell Death 1 Ligand 1 (PD-L1) in Acinic Cell Carcinoma (AciCC) of the salivary glands, to enable a correlation with clinico-pathological features and to analyse their prognostic impact. Methods: This single centre retrospective study represents a cohort of 36 primary AciCCs with long-term clinical follow-up. Immunohistochemically defined immune cell subtypes, i.e., those expressing T-cell markers (CD3, CD4 and CD8) or a B-cell marker (CD20) were characterized on tumour tissue sections. The number of TILs was quantitatively evaluated using software for digital bioimage analysis (QuPath). PD-L1 expression on the tumour cells and on immune cells was assessed immunohistochemically employing established scoring criteria: tumour proportion score (TPS), Ventana immune cell score (IC-Score) and combined positive score (CPS). Results: Higher numbers of tumour-infiltrating T- and B- lymphocytes were significantly associated with high-grade transformation. Furthermore, higher counts of T-lymphocytes correlated with node-positive disease. There was a significant correlation between higher levels of PD-L1 expression and lymph node metastases as well as the occurrence of high-grade transformation. Moreover, PD-L1 CPS was associated with poor prognosis regarding metastasis-free survival (p = 0.049). Conclusions: The current study is the first to demonstrate an association between PD-L1 expression and lymph node metastases as well as grading in AciCCs. In conclusion, increased immune cell infiltration of T and B cells as well as higher levels of PD-L1 expression in AciCC in association with high-grade transformation, lymph node metastasis and unfavourable prognosis suggests a relevant interaction between tumour cells and immune cell infiltrates in a subset of AciCCs, and might represent a rationale for immune checkpoint inhibition.


Author(s):  
Astrid Sissel Jørgensen ◽  
Emma Probst Brandum ◽  
Jeppe Malthe Mikkelsen ◽  
Klaudia A. Orfin ◽  
Ditte Rahbæk Boilesen ◽  
...  

AbstractThe endogenous chemokines CCL19 and CCL21 signal via their common receptor CCR7. CCL21 is the main lymph node homing chemokine, but a weak chemo-attractant compared to CCL19. Here we show that the 41-amino acid positively charged peptide, released through C-terminal cleavage of CCL21, C21TP, boosts the immune cell recruiting activity of CCL21 by up to 25-fold and the signaling activity via CCR7 by ~ 100-fold. Such boosting is unprecedented. Despite the presence of multiple basic glycosaminoglycan (GAG) binding motifs, C21TP boosting of CCL21 signaling does not involve interference with GAG mediated cell-surface retention. Instead, boosting is directly dependent on O-glycosylations in the CCR7 N-terminus. As dictated by the two-step binding model, the initial chemokine binding involves interaction of the chemokine fold with the receptor N-terminus, followed by insertion of the chemokine N-terminus deep into the receptor binding pocket. Our data suggest that apart from a role in initial chemokine binding, the receptor N-terminus also partakes in a gating mechanism, which could give rise to a reduced ligand activity, presumably through affecting the ligand positioning. Based on experiments that support a direct interaction of C21TP with the glycosylated CCR7 N-terminus, we propose that electrostatic interactions between the positively charged peptide and sialylated O-glycans in CCR7 N-terminus may create a more accessible version of the receptor and thus guide chemokine docking to generate a more favorable chemokine-receptor interaction, giving rise to the peptide boosting effect.


2020 ◽  
Vol 128 (3) ◽  
pp. 473-482 ◽  
Author(s):  
Andrew C. Noah ◽  
Thomas M. Li ◽  
Leandro M. Martinez ◽  
Susumu Wada ◽  
Jacob B. Swanson ◽  
...  

Tendon injuries are a common clinical condition with limited treatment options. The cellular components of the innate immune system, such as neutrophils and macrophages, have been studied in tendon injuries. However, the adaptive immune system, comprising specialized lymphocytes, plays an important role in orchestrating the healing of numerous tissues, but less is known about these cells in tendon healing. To gain a greater understanding of the biological processes that regulate tendon healing, we determined how the cellular components of the adaptive and innate immune system respond to a tendon injury using two-month-old male mice. We observed that lymphatic vasculature is present in the epitenon and superficial regions of Achilles tendons, and that the lymphatics drain into the popliteal lymph node. We then created an acute Achilles tenotomy followed by repair, and collected tendons and popliteal lymph nodes 1, 2, and 4 wk after injury. Tendon injury resulted in a robust adaptive immune cell response that followed an initial innate immune cell response in tendons and lymph nodes. Monocytes, neutrophils, and macrophages initially accumulated at 1 wk after injury in tendons, while dendritic cells and CD4+ T cells peaked at 2 wk after injury. B cells and CD8+ T cells progressively increased over time. In parallel, immune cells of the popliteal lymph node demonstrated a similarly coordinated response to the injury. These results suggest that there is an adaptive immune response to tendon injury, and adaptive immune cells may play a role in regulating tendon healing. NEW & NOTEWORTHY While the innate immune system, consisting of macrophages and related hematopoietic cells, has been studied in tendon injury, less is known about the adaptive immune system. Using a mouse model of Achilles tendon tenotomy and repair, we observed an adaptive immune cell response, consisting of CD4+ and CD8+ T cells, and B cells, which occur through 4 wk after tendon injury. This response appeared to be coordinated by the draining popliteal lymph node.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Lan Li ◽  
Guang Wu ◽  
Bo Young Choi ◽  
Bong Geom Jang ◽  
Jin Hee Kim ◽  
...  

The present study aimed to evaluate the therapeutic potential of a mushroom extract fromPhellinus igniariusin an animal model of multiple sclerosis. The medicinal mushroom,Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE) was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35–55) in C57BL/6 female mice. A water-ethanol extract ofPhellinus igniarius(Piwep) was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord and integrin-α4in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γin the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression.


2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Zhongli Shi ◽  
Wayne K. Greene ◽  
Philip K. Nicholls ◽  
Dailun Hu ◽  
Janina E.E. Tirnitz-Parker ◽  
...  

<p>The central nervous system (CNS) influences the immune system in a general fashion by regulating the systemic concentration of humoral substances, whereas the autonomic nervous system communicates specifically with the immune system according to local interactions. Data concerning the mechanisms of this bidirectional crosstalk of the peripheral nervous system (PNS) and immune system remain limited. To gain a better understanding of local interactions of the PNS and immune system, we have used immunofluorescent staining of glial fibrillary acidic protein (GFAP), coupled with confocal microscopy, to investigate the non-myelinating Schwann cell (NMSC)-immune cell interactions in mouse mesenteric lymph nodes. Our results demonstrate i) the presence of extensive NMSC processes and even of cell bodies in each compartment of the mouse mesenteric lymph node; ii) close associations/interactions of NMSC processes with blood vessels (including high endothelial venules) and the lymphatic vessel/sinus; iii) close contacts/associations of NMSC processes with various subsets of dendritic cells (such as CD4<sup>+</sup>CD11c<sup>+</sup>, CD8<sup>+</sup>CD11c<sup>+ </sup>dendritic cells), macrophages (F4/80<sup>+</sup> and CD11b<sup>+</sup> macrophages), and lymphocytes. Our novel findings concerning the distribution of NMSCs and NMSC-immune cell interactions inside the mouse lymph node should help to elucidate the mechanisms through which the PNS affects cellular- and humoral-mediated immune responses or vice versa in health and disease.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Shang Xie ◽  
Xin-Yuan Zhang ◽  
Xiao-Feng Shan ◽  
Vicky Yau ◽  
Jian-Yun Zhang ◽  
...  

Background. Oral squamous cell carcinoma (OSCC) constitutes the most common types of oral cancer. Because its prognosis varies significantly, identification of a tumor immune microenvironment could be a critical tool for treatment planning and predicting a more accurate prognosis. This study is aimed at utilizing the Hyperion imaging system to depict a preliminary landscape of the tumor immune microenvironment in OSCC with lymph node metastasis. Methods. We collected neoplasm samples from OSCC patients. Their formalin-fixed, paraffin-embedded (FFPE) tissue sections were obtained and stained utilizing a panel of 26 clinically relevant metal-conjugated antibodies. Detection and analysis were performed for these stained cells with the Hyperion imaging system. Results. Four patients met our inclusion criteria. We depicted a preliminary landscape of their tumor immune microenvironment and identified 25 distinct immune cell subsets from these OSCC patients based on phenotypic similarity. All these patients had decreased expression of CD8+ T cells in tumor specimens. Variety in cell subsets was seen, and more immune activated cells were found in patient A and patient B than those in patient C and patient D. Such differences in tumor immune microenvironments can contribute to forecasting of individual prognoses. Conclusion. The Hyperion imaging system helped to delineate a preliminary and multidimensional landscape of the tumor immune microenvironment in OSCC with lymph node metastasis and provided insights into the influence of the immune microenvironment in determination of prognoses. These results reveal possible contributory factors behind different prognoses of OSCC patients with lymph node metastasis and provide reference for individual treatment planning.


2021 ◽  
Vol 9 (7) ◽  
pp. e002968
Author(s):  
Shelley Herbrich ◽  
Natalia Baran ◽  
Tianyu Cai ◽  
Connie Weng ◽  
Marisa J L Aitken ◽  
...  

BackgroundAcute myeloid leukemia (AML) stem cells (LSCs) are capable of surviving current standard chemotherapy and are the likely source of deadly, relapsed disease. While stem cell transplant serves as proof-of-principle that AML LSCs can be eliminated by the immune system, the translation of existing immunotherapies to AML has been met with limited success. Consequently, understanding and exploiting the unique immune-evasive mechanisms of AML LSCs is critical.MethodsAnalysis of stem cell datasets and primary patient samples revealed CD200 as a putative stem cell–specific immune checkpoint overexpressed in AML LSCs. Isogenic cell line models of CD200 expression were employed to characterize the interaction of CD200+ AML with various immune cell subsets both in vitro and in peripheral blood mononuclear cell (PBMC)–humanized mouse models. CyTOF and RNA-sequencing were performed on humanized mice to identify novel mechanisms of CD200-mediated immunosuppression. To clinically translate these findings, we developed a fully humanized CD200 antibody (IgG1) that removed the immunosuppressive signal by blocking interaction with the CD200 receptor while also inducing a potent Fc-mediated response. Therapeutic efficacy of the CD200 antibody was evaluated using both humanized mice and patient-derived xenograft models.ResultsOur results demonstrate that CD200 is selectively overexpressed in AML LSCs and is broadly immunosuppressive by impairing cytokine secretion in both innate and adaptive immune cell subsets. In a PBMC-humanized mouse model, CD200+ leukemia progressed rapidly, escaping elimination by T cells, compared with CD200− AML. T cells from mice with CD200+ AML were characterized by an abundance of metabolically quiescent CD8+ central and effector memory cells. Mechanistically, CD200 expression on AML cells significantly impaired OXPHOS metabolic activity in T cells from healthy donors. Importantly, CD200 antibody therapy could eliminate disease in the presence of graft-versus-leukemia in immune competent mice and could significantly improve the efficacy of low-intensity azacitidine/venetoclax chemotherapy in immunodeficient hosts.ConclusionsOverexpression of CD200 is a stem cell–specific marker that contributes to immunosuppression in AML by impairing effector cell metabolism and function. CD200 antibody therapy is capable of simultaneously reducing CD200-mediated suppression while also engaging macrophage activity. This study lays the groundwork for CD200-targeted therapeutic strategies to eliminate LSCs and prevent AML relapse.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Victoria Cotero ◽  
Tzu-Jen Kao ◽  
John Graf ◽  
Jeffrey Ashe ◽  
Christine Morton ◽  
...  

Abstract Background Peripheral nerve reflexes enable organ systems to maintain long-term physiological homeostasis while responding to rapidly changing environmental conditions. Electrical nerve stimulation is commonly used to activate these reflexes and modulate organ function, giving rise to an emerging class of therapeutics called bioelectronic medicines. Dogma maintains that immune cell migration to and from organs is mediated by inflammatory signals (i.e. cytokines or pathogen associated signaling molecules). However, nerve reflexes that regulate immune function have only recently been elucidated, and stimulation of these reflexes for therapeutic effect has not been fully investigated. Methods We utilized both electrical and ultrasound-based nerve stimulation to activate nerve pathways projecting to specific lymph nodes. Tissue and cell analysis of the stimulated lymph node, distal lymph nodes and immune organs is then utilized to measure the stimulation-induced changes in neurotransmitter/neuropeptide concentrations and immune cellularity in each of these sites. Results and conclusions In this report, we demonstrate that activation of nerves and stimulated release of neurotransmitters within a local lymph node results in transient retention of immune cells (e.g. lymphocytes and neutrophils) at that location. Furthermore, such stimulation results in transient changes in neurotransmitter concentrations at distal organs of the immune system, spleen and liver, and mobilization of immune cells into the circulation. This report will enable future studies in which stimulation of these long-range nerve connections between lymphatic and immune organs can be applied for clinical purpose, including therapeutic modulation of cellularity during vaccination, active allergic response, or active auto-immune disease.


2015 ◽  
Vol 33 (15_suppl) ◽  
pp. e20011-e20011
Author(s):  
Hojabr Kakavand ◽  
Ricardo Vilain ◽  
James S Wilmott ◽  
Hazel Burke ◽  
Jennifer Yearley ◽  
...  

2006 ◽  
Vol 24 (31) ◽  
pp. 5052-5059 ◽  
Author(s):  
Abigail M. Lee ◽  
Andrew J. Clear ◽  
Maria Calaminici ◽  
Andrew J. Davies ◽  
Suzanne Jordan ◽  
...  

Purpose To examine the immune microenvironment in diagnostic follicular lymphoma (FL) biopsies and evaluate its prognostic significance. Patients and Methods Immunohistochemistry was used to study numbers and location of cells staining positive for immune cell markers CD4, CD7, CD8, CD25, CD68, forkhead box protein P3 (FOXP3), T-cell intracellular antigen-1, and Granzyme B in tissue microarrays of paraffin-embedded, diagnostic lymph node biopsies taken from 59 FL patients who lived less than 5 years (short-survival group; n = 34) and more than 15 years (long-survival group; n = 25). Results CD4 and FOXP3 expression were significantly different between the two groups. Samples from the long-survival group were more likely than those from the short-survival group to have CD4+ staining cells and to have FOXP3-positive cells in a perifollicular location. Conclusion This study has identified differences in immune cell composition of the diagnostic FL lymph node immune microenvironment and these have the potential for use as prognostic biomarkers in a routine histopathology setting.


Sign in / Sign up

Export Citation Format

Share Document