scholarly journals Auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuting Qiu ◽  
Si Cong Guan ◽  
Chenjin Wen ◽  
Peng Li ◽  
Zhen Gao ◽  
...  

Abstract Background Axillary buds allow the production of either vegetative or reproductive shoots, which display a plastic developmental potential of the plant to suit the prevailing environmental changes. Strawberry represents one of many plant species which displays horizontal above-ground growth of shoot development for asexual reproduction. Two distinct runner growth patterns exist in different strawberry species: one is called sympodial type such as Fragaria vesca, and the other one is called monopodial type such as Fragaria pentaphylla. Despite the runner growth morphology of these strawberry species have been well known, the mechanisms that determine the distinct patterns have rarely been reported. Results In this study, we used Fragaria vesca Hawaii-4 and Fragaria pentaphylla as model species, and captured the initiated dormant bud and non-dormant bud as materials to compare their transcriptome profiles and phytohormone content. Comparisons revealed that relatively higher auxin activity is present in the dormant bud and relatively higher cytokinin activity is in the non-dormant bud. Decapitation and pharmacological experiments on dormant buds showed that the reduction of auxin accumulation triggers the regeneration of vegetative shoots in dormant buds, and exogenous cytokinin application triggers cell fate turnover and generation of reproductive shoots. Conclusion Here, we uncover a mechanism by which auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner. Our results suggest a contrasting behavior of auxin and cytokinin in control of axillary bud development, facilitating a preliminary understanding of shoot architecture formation in strawberry.

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 150 ◽  
Author(s):  
Katarzyna Retzer ◽  
Wolfram Weckwerth

Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth. This review presents an overview of events upstream and downstream of PIN2 action, which are involved in root hair growth control.


Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1559-1568 ◽  
Author(s):  
H. Hutter ◽  
R. Schnabel

In a C. elegans embryo the third cleavages of descendants of the anterior blastomere AB of the 2-cell stage create pairs of blastomeres that develop differently. By laser ablation experiments we show that the fates of all the posterior daughters of this division depend on an induction occurring three cleavages before these blastomeres are born. The time of induction precludes a direct effect on cell fate. Alternatively, we suggest that the induction creates a heritable cell polarity which is propagated through several divisions. We suggest a model to demonstrate how a signal could be propagated through several rounds of cell division. An important implication of our observations is that this early induction acts to specify blastomere identity, not tissue type. A detailed lineage analysis revealed that altering the inductive signal alters complex lineage patterns as a whole. The induction described here, together with two inductions described previously can be used to illustrate how the anterior portion of the C. elegans embryo can be successively subdivided into blastomeres with unique developmental potential.


2020 ◽  
Vol 17 (170) ◽  
pp. 20200350
Author(s):  
Zak Frentz ◽  
Jonathan Dworkin

Spore-forming bacteria modulate their metabolic rate by over five orders of magnitude as they transition between dormant spores and vegetative cells and thus represent an extreme case of phenotypic variation. During environmental changes in nutrient availability, clonal populations of spore-forming bacteria exhibit individual differences in cell fate, the timing of phenotypic transitions and gene expression. One potential source of this variability is metabolic heterogeneity, but this has not yet been measured, as existing single-cell methods are not easily applicable to spores due to their small size and strong autofluorescence. Here, we use the bacterial bioluminescence system and a highly sensitive microscope to measure metabolic dynamics in thousands of B. subtilis spores as they germinate. We observe and quantitate large variations in the bioluminescence dynamics across individual spores that can be decomposed into contributions from variability in germination timing, the amount of endogenously produced luminescence substrate and the intracellular reducing power. This work shows that quantitative measurement of spore metabolism is possible and thus it opens avenues for future study of the thermodynamic nature of dormant states.


Development ◽  
2020 ◽  
Vol 147 (19) ◽  
pp. dev192039
Author(s):  
Krishna Vasant Mutanwad ◽  
Isabella Zangl ◽  
Doris Lucyshyn

ABSTRACTRoot hairs are able to sense soil composition and play an important role in water and nutrient uptake. In Arabidopsis thaliana, root hairs are distributed in the epidermis in a specific pattern, regularly alternating with non-root hair cells in continuous cell files. This patterning is regulated by internal factors such as a number of hormones, as well as by external factors like nutrient availability. Thus, root hair patterning is an excellent model for studying the plasticity of cell fate determination in response to environmental changes. Here, we report that loss-of-function mutants for the Protein O-fucosyltransferase SPINDLY (SPY) show defects in root hair patterning. Using transcriptional reporters, we show that patterning in spy-22 is affected upstream of GLABRA2 (GL2) and WEREWOLF (WER). O-fucosylation of nuclear and cytosolic proteins is an important post-translational modification that is still not very well understood. So far, SPY is best characterized for its role in gibberellin signaling via fucosylation of the growth-repressing DELLA protein REPRESSOR OF ga1-3 (RGA). Our data suggest that the epidermal patterning defects in spy-22 are independent of RGA and gibberellin signaling.


2013 ◽  
Vol 368 (1609) ◽  
pp. 20110330 ◽  
Author(s):  
Stefanie Seisenberger ◽  
Julian R. Peat ◽  
Timothy A. Hore ◽  
Fátima Santos ◽  
Wendy Dean ◽  
...  

In mammalian development, epigenetic modifications, including DNA methylation patterns, play a crucial role in defining cell fate but also represent epigenetic barriers that restrict developmental potential. At two points in the life cycle, DNA methylation marks are reprogrammed on a global scale, concomitant with restoration of developmental potency. DNA methylation patterns are subsequently re-established with the commitment towards a distinct cell fate. This reprogramming of DNA methylation takes place firstly on fertilization in the zygote, and secondly in primordial germ cells (PGCs), which are the direct progenitors of sperm or oocyte. In each reprogramming window, a unique set of mechanisms regulates DNA methylation erasure and re-establishment. Recent advances have uncovered roles for the TET3 hydroxylase and passive demethylation, together with base excision repair (BER) and the elongator complex, in methylation erasure from the zygote. Deamination by AID, BER and passive demethylation have been implicated in reprogramming in PGCs, but the process in its entirety is still poorly understood. In this review, we discuss the dynamics of DNA methylation reprogramming in PGCs and the zygote, the mechanisms involved and the biological significance of these events. Advances in our understanding of such natural epigenetic reprogramming are beginning to aid enhancement of experimental reprogramming in which the role of potential mechanisms can be investigated in vitro . Conversely, insights into in vitro reprogramming techniques may aid our understanding of epigenetic reprogramming in the germline and supply important clues in reprogramming for therapies in regenerative medicine.


2022 ◽  
Author(s):  
Xigang Liu ◽  
Ke Zhang ◽  
Hao Zhang ◽  
Yanyun Pan ◽  
Lin Guo ◽  
...  

In cell-cell communication, non-cell-autonomous transcription factors play vital roles in controlling plant stem cell fate. We previously reported that AUXIN RESPONSE FACTOR 3 (ARF3), a member of the ARF family with critical roles in floral meristem maintenance and determinacy, has a distinct accumulation pattern that differs from the expression domain of its encoding gene in the shoot apical meristem (SAM). However, the biological meaning of this difference is obscure. Here, we demonstrate that ARF3 expression is mainly activated at the periphery of the SAM by auxin, where ARF3 cell-autonomously regulates the expression of meristem-organ boundary-specific genes, such as CUP-SHAPED COTYLEDON1-3 (CUC1-3), BLADE ON PETIOLE1-2 (BOP1-2) and TARGETS UNDER ETTIN CONTROL3 (TEC3) to determine organ patterning. We also show that ARF3 is translocated into the organizing center, where it represses cytokinin activity and WUSCHEL expression to regulate meristem activity non-cell-autonomously. Therefore, ARF3 acts as a molecular link that mediates the interaction of auxin and cytokinin signaling in the SAM while coordinating the balance between meristem maintenance and organogenesis. Our findings reveal an ARF3-mediated coordination mechanism through cell-cell communication in dynamic SAM maintenance.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3175-3185 ◽  
Author(s):  
M.Q. Martindale ◽  
J.Q. Henry

The nemerteans belong to a phylum of coelomate worms that display a highly conserved pattern of cell divisions referred to as spiral cleavage. It has recently been shown that the fates of the four embryonic cell quadrants in two species of nemerteans are not homologous to those in other spiralian embryos, such as the annelids and molluscs (Henry, J. Q. and Martindale, M. Q. (1994a) Develop. Genetics 15, 64–78). Equal-cleaving molluscs utilize inductive interactions to establish quadrant-specific cell fates and embryonic symmetry properties following fifth cleavage. In order to elucidate the manner in which cell fates are established in nemertean embryos, we have conducted cell isolation and deletion experiments to examine the developmental potential of the early cleavage blastomeres of two equal-cleaving nemerteans, Nemertopsis bivittata and Cerebratulus lacteus. These two species display different modes of development: N. bivittata develops directly via a non-feeding larvae, while C. lacteus develops to form a feeding pilidium larva which undergoes a radical metamorphosis to give rise to the juvenile worm. By examining the development of certain structures and cell types characteristic of quadrant-specific fates for each of these species, we have shown that isolated blastomeres of the indirect-developing nemertean, C. lacteus, are capable of generating cell fates that are not a consequence of that cell's normal developmental program. For instance, dorsal blastomeres can form muscle fibers when cultured in isolation. In contrast, isolated blastomeres of the direct-developing species, N. bivittata do not regulate their development to the same extent. Some cell fates are specified in a precocious manner in this species, such as those that give rise to the eyes. Thus, these findings indicate that equal-cleaving spiralian embryos can utilize different mechanisms of cell fate and axis specification. The implications of these patterns of nemertean development are discussed in relation to experimental work in other spiralian embryos, and a model is presented that accounts for possible evolutionary changes in cell lineage and the process of cell fate specification amongst these protostome phyla.


2001 ◽  
Vol 193 (6) ◽  
pp. 689-698 ◽  
Author(s):  
Joonsoo Kang ◽  
Ariane Volkmann ◽  
David H. Raulet

Two types of T cells, αβ and γδ, develop in vertebrates. How these two T cell lineages arise from a common thymic T progenitor is poorly understood. Differentiation of αβ lineage T cells requires the surrogate α chain (pTα), which associates with the T cell receptor (TCR) β chain to form the pre-TCR. γδ lineage development does not appear to involve an obligatory surrogate chain, but instead requires productive rearrangement and expression of both TCR γ and δ genes. It has been proposed that the quality of signals transmitted by the pre-TCR and γδ TCR are distinct and that these “instructive” signals determine the lineage fate of an uncommitted progenitor cell. Here we show that the thymic T progenitor cells (CD25+CD44+c-kit+CD3−CD4−CD8− thymocytes, termed pro-T cells) from young adult mice that have yet to express TCRs can be subdivided based on interleukin 7 receptor (IL-7R) expression. These subsets exhibit differential potential to develop into γδ versus αβ lineage (CD4+CD8+ cells) in the thymus. Upon intrathymic injection, IL-7Rneg-lo pro-T cells generated a 13-fold higher ratio of αβ lineage to γδ lineage cells than did IL-7R+ pro-T cells. Much of this difference was due to a fivefold greater potential of IL-7R+ pro-T cells to develop into TCR-γδ T cells. Evidence indicates that this biased developmental potential is not a result of enhanced TCR-γ gene rearrangement/expression in IL-7R+ pro-T cells. These results indicate that the pro-T cells are heterogeneous in developmental potential before TCR gene rearrangement and suggest that in some precursor cells the initial lineage commitment is independent of TCR-mediated signals.


2010 ◽  
Vol 50 (1) ◽  
pp. 200-242 ◽  
Author(s):  
Costas A. Lyssiotis ◽  
Luke L. Lairson ◽  
Anthony E. Boitano ◽  
Heiko Wurdak ◽  
Shoutian Zhu ◽  
...  

Development ◽  
1989 ◽  
Vol 107 (Supplement) ◽  
pp. 53-57
Author(s):  
Judith Austin ◽  
Eleanor M. Maine ◽  
Judith Kimble

Cell–cell interactions play a significant role in controlling cell fate during development of the nematode Caenorhabditis elegans. It has been found that two genes, glp-1 and lin-12, are required for many of these decisions, glp-1 is required for induction of mitotic proliferation in the germline by the somatic distal tip cell and for induction of the anterior pharynx early in embryogenesis. lin-12 is required for the interactions between cells of equivalent developmental potential, which allow them to take on different fates. Comparison of these two genes on a molecular level indicates that they are similar in sequence and organization, suggesting that the mechanisms of these two different sets of cell–cell interactions are similar.


Sign in / Sign up

Export Citation Format

Share Document