scholarly journals Comparative cytokine profiling identifies common and unique serum cytokine responses in acute chikungunya and dengue virus infection

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rama Dhenni ◽  
Benediktus Yohan ◽  
Bachti Alisjahbana ◽  
Anton Lucanus ◽  
Silvita Fitri Riswari ◽  
...  

Abstract Background Infection by chikungunya (CHIKV) and dengue virus (DENV) can cause a wide spectrum of clinical features, many of which are undifferentiated. Cytokines, which broadly also include chemokines and growth factors, have been shown to play a role in protective immunity as well as DENV and CHIKV pathogenesis. However, differences in cytokine response to both viruses remain poorly understood, especially in patients from countries where both viruses are endemic. Our study is therefore aimed to provide a comparative profiling of cytokine response induced by acute DENV and CHIKV infections in patients with similar disease stages and in experimental in vitro infections. Methods By using multiplex immunoassay, we compared host cytokine profiles between acute CHIKV and DENV infections by analysing serum cytokine levels of IL-1α, IL-4, IL-5, IL-8, IL-13, RANTES, MCP-3, eotaxin, PDGF-AB/BB, and FGF-2 from the sera of acute chikungunya and dengue fever patients. We further investigated the cytokine profile responses using experimental in vitro CHIKV and DENV infections of peripheral blood mononuclear cells (PBMCs). Results We found that both CHIKV and DENV-infected patients had an upregulated level of IL-8 and IL-4, with the highest IL-4 level observed in DENV-2 infected patients. Higher IL-8 level was also correlated with lower platelet count in dengue patients. IL-13 and MCP-3 downregulation was observed only in chikungunya patients, while conversely PDGF-AB/BB and FGF-2 downregulation was unique in dengue patients. Age-associated differential expression of IL-13, MCP-3, and IL-5 was also observed, while distinct kinetics of IL-4, IL-8, and FGF-2 expression between CHIKV and DENV-infected patients were identified. Furthermore, the unique pattern of IL-8, IL-13 and MCP-3, but not IL-4 expression was also recapitulated using experimental in vitro infection in PBMCs. Conclusions Taken together, our study identified common cytokine response profile characterized by upregulation of IL-8 and IL-4 between CHIKV and DENV infection. Downregulation of IL-13 and MCP-3 was identified as a unique cytokine response profile of acute CHIKV infection, while distinct downregulation of PDGF-AB/BB and FGF-2 characterized the response from acute DENV infection. Our study provides an important overview of the host cytokine responses between CHIKV and DENV infection, which is important to further understand the mechanism and pathology of these diseases.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Marisol Pérez-Acosta ◽  
Félix Giovanni Delgado ◽  
Jaime E. Castellanos

Dengue virus (DENV) produces an acute infection that results in the overproduction of proinflammatory cytokines. Although increased levels of the immunoregulator soluble ST2 (sST2) protein have been reported in the serum of patients with dengue, its importance during DENV infection remains unclear. The purpose of this study was to evaluate the effect of a recombinant human sST2 protein on the production of TNF-α and IL-6 in an in vitro model of DENV infection. Peripheral blood mononuclear cells (PBMCs) were permissive to in vitro DENV infection since viral antigen was detected in CD14+ monocytes by flow cytometry (median, 1%; range, 0–2.2), and in their supernatants TNF-α and IL-6 were detected. However, sST2 protein was not detected. Using multiple staining on infected PBMC we found that only CD14+ cells produced TNF-α and IL-6. Treatment with human recombinant sST2 protein decreased lipopolysaccharide-induced monocyte TNF-α and IL-6 production. However, this effect was not observed when the monocytes were pretreated with sST2 and later infected with DENV-2. These results suggest that sST2 has different roles in the regulation of TNF-α and IL-6 expression in human monocytes stimulated with LPS and DENV-2.


Author(s):  
Steven S. Good ◽  
Ashleigh Shannon ◽  
Kai Lin ◽  
Adel Moussa ◽  
Justin G. Julander ◽  
...  

Every year millions of people worldwide are infected with dengue virus (DENV), with a significant number developing severe life-threatening disease. There are currently no broadly indicated vaccines or therapeutics available for treatment of DENV infection. Here, we show that AT-281, the free base of AT-752, an orally available double prodrug of a guanosine nucleotide analog, was a potent inhibitor of DENV serotypes 2 and 3 in vitro , requiring concentrations of 0.48 and 0.77 μM, respectively, to inhibit viral replication by 50% (EC 50 ) in Huh-7 cells. AT-281 was also a potent inhibitor of all other flaviviruses tested with EC 50 values ranging from 0.19 to 1.41 μM. Little to no cytotoxicity was observed for AT-281 at concentrations up to 170 μM. After oral administration of AT-752, substantial levels of the active triphosphate metabolite AT-9010 were formed in vivo in peripheral blood mononuclear cells of mice, rats and monkeys. Furthermore, AT-9010 competed with guanosine triphosphate in RNA template-primer elongation assays with DENV-2 RNA polymerase, which is essential for viral replication, with incorporation of AT-9010 resulting in termination of RNA synthesis. In AG129 mice infected with DENV D2Y98P, treatment with AT-752 significantly reduced viremia and morbidity and increased survival. The demonstrated in vitro and in vivo activity of AT-752 suggest that it is a promising compound for the treatment of dengue virus infection, and is currently under evaluation in clinical studies.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3346-3354 ◽  
Author(s):  
Ligia A. Pinto ◽  
Sandra Sharpe ◽  
David I. Cohen ◽  
Gene M. Shearer

Abstract A number of studies have suggested that an immune response to human leukocyte antigen (HLA) alloantigens may contribute to protection against HIV infection. In the present study, we examined the effect of alloantigen-stimulated cell lines obtained from peripheral blood mononuclear cells (PBMC) of HIV-uninfected (HIV−) individuals and the soluble factors produced by these cell lines on HIV-1 replication. Multiple in vitro restimulation with irradiated allogeneic PBMC from HIV− donors resulted in the expansion of CD8+ T-cell lines that inhibited HIV-1 replication when cocultured with either autologous or heterologous in vitro–infected phytohemagglutinin (PHA) blasts. Supernatants from the alloantigen-stimulated cell lines also inhibited HIV replication in both PHA blasts and a chronically infected cell line. The alloantigen-stimulated cell lines and the factors they produced inhibited both T-cell–tropic (T) and macrophage-tropic (M) isolates of HIV-1. Blocking experiments using anti-chemokine antibodies suggested that this inhibition of HIV replication was not due to the β-chemokines present in cocultures of cell lines with HIV-infected blasts. These results indicate that alloantigen-stimulation of PBMC from HIV−individuals activates CD8+ T cells that produce soluble factor(s) that inhibit HIV replication of a wide spectrum of HIV-1 isolates through a chemokine-independent mechanism. This is a US government work. There are no restrictions on its use.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Ratna Karuna ◽  
Fumiaki Yokokawa ◽  
Keshi Wang ◽  
Jin Zhang ◽  
Haoying Xu ◽  
...  

ABSTRACT Monophosphate prodrug analogs of 2′-deoxy-2′-fluoro-2′-C-methylguanosine have been reported as potent inhibitors of hepatitis C virus (HCV) RNA-dependent RNA polymerase. These prodrugs also display potent anti-dengue virus activities in cellular assays although their prodrug moieties were designed to produce high levels of triphosphate in the liver. Since peripheral blood mononuclear cells (PBMCs) are among the major targets of dengue virus, different prodrug moieties were designed to effectively deliver 2′-deoxy-2′-fluoro-2′-C-methylguanosine monophosphate prodrugs and their corresponding triphosphates into PBMCs after oral administration. We identified a cyclic phosphoramidate, prodrug 17, demonstrating well-balanced anti-dengue virus cellular activity and in vitro stability profiles. We further determined the PBMC concentration of active triphosphate needed to inhibit virus replication by 50% (TP50). Compound 17 was assessed in an AG129 mouse model and demonstrated 1.6- and 2.2-log viremia reductions at 100 and 300 mg/kg twice a day (BID), respectively. At 100 mg/kg BID, the terminal triphosphate concentration in PBMCs exceeded the TP50 value, demonstrating TP50 as the target exposure for efficacy. In dogs, oral administration of compound 17 resulted in high PBMC triphosphate levels, exceeding the TP50 at 10 mg/kg. Unfortunately, 2-week dog toxicity studies at 30, 100, and 300 mg/kg/day showed that “no observed adverse effect level” (NOAEL) could not be achieved due to pulmonary inflammation and hemorrhage. The preclinical safety results suspended further development of compound 17. Nevertheless, present work has proven the concept that an efficacious monophosphate nucleoside prodrug could be developed for the potential treatment of dengue virus infection.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S36-S36 ◽  
Author(s):  
Frank Van De Veerdonk ◽  
Intan Dewi ◽  
Christina Cunha ◽  
Lore vanderBeeke ◽  
Martin Jaeger ◽  
...  

Abstract Background Influenza-associated aspergillosis (IAA) is an emerging fungal infection with high mortality and morbidity and the pathogenesis of this disease is not well understood. Interestingly, the number of IAA case reports has increased since the widespread use of neuraminidase inhibitors, such as oseltamivir in 2009. We set out to determine whether oseltamivir could contribute to the pathogenesis of IAA by modulating host responses. Methods First, peripheral blood mononuclear cells (PBMCs) and neutrophils from healthy donors were stimulated with neuraminidase (NA)-treated A. fumigatus or were pre-exposed to NA prior to stimulation with Aspergillus conidia. In addition, PBMCs and neutrophils were pretreated with oseltamivir carboxylate prior to stimulation. Cytokines were measured from supernatants after 24 hours of incubation at 37°C. C57BL/6 and BALB/c mice were treated with oseltamivir prior to intranasal challenge with A. fumigatus. Immunosuppression was induced by corticosteroid or cyclophosphamide. Results We demonstrate that Aspergillus treated with NA induced an enhanced immune response. Moreover, PBMCs and neutrophils treated with NA produced increased cytokine responses. Blocking NA in vitro with oseltamivir reduced Aspergillus-induced cytokine responses. Next we investigated the effects of blocking neuraminidase activity with oseltamivir in vivo. Immunocompetent mice and mice treated with corticosteroids showed increased mortality, lung fungal burden, and decreased cytokine production when treated with oseltamivir. These effects were not observed in cyclophosphamide-treated mice, suggesting that the effects of NA activity in anti-Aspergillus host defense acts mainly via myeloid cells. Conclusion Our results provide evidence that host neuraminidase activity is important for protective anti-Aspergillus immune responses. Treatment with oseltamivir, thus blocking host NA activity, in a setting of corticosteroid use might therefore increase susceptibility to Aspergillus infection. These results warrant further study on the role of neuraminidase and the effects of oseltamivir on susceptibility to invasive pulmonary aspergillosis during active influenza infection. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 29 (3) ◽  
pp. 260-7
Author(s):  
Sekar Asri Tresnaningtyas ◽  
Fithriyah Sjatha ◽  
Beti Ernawati Dewi

BACKGROUND Dengue virus (DENV) can infect and replicate in monocytes, resulting in antibody-dependent enhancement. The liver is the main target of DENV, and the infection mechanisms of DENV include direct cytopathic effects (CPEs) of the virus, mitochondrial dysfunction, and effect of cellular and humoral immune factors in the liver. This study was aimed to explore the infectivity of DENV and viability of human hepatocytes using Huh 7it-1 cells cocultured with peripheral blood mononuclear cells (PBMCs). METHODS Huh 7it-1 cells were infected with dengue virus serotype-2 (DENV-2) New Guinea C strain at multiplicity of infection of 0.5 and 1 FFU/cell, and cocultured in vitro with and without adherent PBMCs. The infectivity of DENV was assessed by immunoperoxidase staining. The viability of Huh 7it-1 cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, a tetrazole) assay and trypan blue staining. Data were statistically analyzed by Shapiro–Wilk and analysis of variance for normality significances. RESULTS The result showed that addition of PBMCs to DENV-2 infected Huh 7it-1 cells decreased the infectivity of DENV (15–37%). DENV-2 infection decreased the viability of Huh 7it-1 cells (15.5–20.8%). Despite the decrease in infectivity of DENV, the addition of PBMCs increased the Huh 7it-1 cells viability (4.5–10.2%). CONCLUSIONS Addition of PBMCs to Huh 7it-1 cells that are infected with DENV-2 decreased the infectivity of DENV and increased Huh 7it-1 cells viability.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3346-3354 ◽  
Author(s):  
Ligia A. Pinto ◽  
Sandra Sharpe ◽  
David I. Cohen ◽  
Gene M. Shearer

A number of studies have suggested that an immune response to human leukocyte antigen (HLA) alloantigens may contribute to protection against HIV infection. In the present study, we examined the effect of alloantigen-stimulated cell lines obtained from peripheral blood mononuclear cells (PBMC) of HIV-uninfected (HIV−) individuals and the soluble factors produced by these cell lines on HIV-1 replication. Multiple in vitro restimulation with irradiated allogeneic PBMC from HIV− donors resulted in the expansion of CD8+ T-cell lines that inhibited HIV-1 replication when cocultured with either autologous or heterologous in vitro–infected phytohemagglutinin (PHA) blasts. Supernatants from the alloantigen-stimulated cell lines also inhibited HIV replication in both PHA blasts and a chronically infected cell line. The alloantigen-stimulated cell lines and the factors they produced inhibited both T-cell–tropic (T) and macrophage-tropic (M) isolates of HIV-1. Blocking experiments using anti-chemokine antibodies suggested that this inhibition of HIV replication was not due to the β-chemokines present in cocultures of cell lines with HIV-infected blasts. These results indicate that alloantigen-stimulation of PBMC from HIV−individuals activates CD8+ T cells that produce soluble factor(s) that inhibit HIV replication of a wide spectrum of HIV-1 isolates through a chemokine-independent mechanism. This is a US government work. There are no restrictions on its use.


2020 ◽  
Vol 222 (4) ◽  
pp. 590-600 ◽  
Author(s):  
Paulina Andrade ◽  
Parnal Narvekar ◽  
Magelda Montoya ◽  
Daniela Michlmayr ◽  
Angel Balmaseda ◽  
...  

Abstract Background The 4 antigenically distinct serotypes of dengue virus (DENV) share extensive homology with each other and with the closely related Zika flavivirus (ZIKV). The development of polyclonal memory B cells (MBCs) to the 4 DENV serotypes and ZIKV during DENV infection is not fully understood. Methods In this study, we analyzed polyclonal MBCs at the single-cell level from peripheral blood mononuclear cells collected ~2 weeks or 6–7 months postprimary or postsecondary DENV infection from a pediatric hospital-based study in Nicaragua using a Multi-Color FluoroSpot assay. Results Dengue virus elicits robust type-specific and cross-reactive MBC responses after primary and secondary DENV infection, with a significantly higher cross-reactive response in both. Reactivity to the infecting serotype dominated the total MBC response. Although the frequency and proportion of type-specific and cross-reactive MBCs were comparable between primary and secondary DENV infections, within the cross-reactive response, the breadth of MBC responses against different serotypes was greater after secondary DENV infection. Dengue virus infection also induced cross-reactive MBC responses recognizing ZIKV, particularly after secondary DENV infection. Conclusions Overall, our study sheds light on the polyclonal MBC response to DENV and ZIKV in naive and DENV-preimmune subjects, with important implications for natural infections and vaccine development.


Sign in / Sign up

Export Citation Format

Share Document