scholarly journals Soluble ST2 Does Not Regulate TNF-α and IL-6 Production in Dengue Virus-Infected Human Monocytes

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Marisol Pérez-Acosta ◽  
Félix Giovanni Delgado ◽  
Jaime E. Castellanos

Dengue virus (DENV) produces an acute infection that results in the overproduction of proinflammatory cytokines. Although increased levels of the immunoregulator soluble ST2 (sST2) protein have been reported in the serum of patients with dengue, its importance during DENV infection remains unclear. The purpose of this study was to evaluate the effect of a recombinant human sST2 protein on the production of TNF-α and IL-6 in an in vitro model of DENV infection. Peripheral blood mononuclear cells (PBMCs) were permissive to in vitro DENV infection since viral antigen was detected in CD14+ monocytes by flow cytometry (median, 1%; range, 0–2.2), and in their supernatants TNF-α and IL-6 were detected. However, sST2 protein was not detected. Using multiple staining on infected PBMC we found that only CD14+ cells produced TNF-α and IL-6. Treatment with human recombinant sST2 protein decreased lipopolysaccharide-induced monocyte TNF-α and IL-6 production. However, this effect was not observed when the monocytes were pretreated with sST2 and later infected with DENV-2. These results suggest that sST2 has different roles in the regulation of TNF-α and IL-6 expression in human monocytes stimulated with LPS and DENV-2.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rama Dhenni ◽  
Benediktus Yohan ◽  
Bachti Alisjahbana ◽  
Anton Lucanus ◽  
Silvita Fitri Riswari ◽  
...  

Abstract Background Infection by chikungunya (CHIKV) and dengue virus (DENV) can cause a wide spectrum of clinical features, many of which are undifferentiated. Cytokines, which broadly also include chemokines and growth factors, have been shown to play a role in protective immunity as well as DENV and CHIKV pathogenesis. However, differences in cytokine response to both viruses remain poorly understood, especially in patients from countries where both viruses are endemic. Our study is therefore aimed to provide a comparative profiling of cytokine response induced by acute DENV and CHIKV infections in patients with similar disease stages and in experimental in vitro infections. Methods By using multiplex immunoassay, we compared host cytokine profiles between acute CHIKV and DENV infections by analysing serum cytokine levels of IL-1α, IL-4, IL-5, IL-8, IL-13, RANTES, MCP-3, eotaxin, PDGF-AB/BB, and FGF-2 from the sera of acute chikungunya and dengue fever patients. We further investigated the cytokine profile responses using experimental in vitro CHIKV and DENV infections of peripheral blood mononuclear cells (PBMCs). Results We found that both CHIKV and DENV-infected patients had an upregulated level of IL-8 and IL-4, with the highest IL-4 level observed in DENV-2 infected patients. Higher IL-8 level was also correlated with lower platelet count in dengue patients. IL-13 and MCP-3 downregulation was observed only in chikungunya patients, while conversely PDGF-AB/BB and FGF-2 downregulation was unique in dengue patients. Age-associated differential expression of IL-13, MCP-3, and IL-5 was also observed, while distinct kinetics of IL-4, IL-8, and FGF-2 expression between CHIKV and DENV-infected patients were identified. Furthermore, the unique pattern of IL-8, IL-13 and MCP-3, but not IL-4 expression was also recapitulated using experimental in vitro infection in PBMCs. Conclusions Taken together, our study identified common cytokine response profile characterized by upregulation of IL-8 and IL-4 between CHIKV and DENV infection. Downregulation of IL-13 and MCP-3 was identified as a unique cytokine response profile of acute CHIKV infection, while distinct downregulation of PDGF-AB/BB and FGF-2 characterized the response from acute DENV infection. Our study provides an important overview of the host cytokine responses between CHIKV and DENV infection, which is important to further understand the mechanism and pathology of these diseases.


Author(s):  
Steven S. Good ◽  
Ashleigh Shannon ◽  
Kai Lin ◽  
Adel Moussa ◽  
Justin G. Julander ◽  
...  

Every year millions of people worldwide are infected with dengue virus (DENV), with a significant number developing severe life-threatening disease. There are currently no broadly indicated vaccines or therapeutics available for treatment of DENV infection. Here, we show that AT-281, the free base of AT-752, an orally available double prodrug of a guanosine nucleotide analog, was a potent inhibitor of DENV serotypes 2 and 3 in vitro , requiring concentrations of 0.48 and 0.77 μM, respectively, to inhibit viral replication by 50% (EC 50 ) in Huh-7 cells. AT-281 was also a potent inhibitor of all other flaviviruses tested with EC 50 values ranging from 0.19 to 1.41 μM. Little to no cytotoxicity was observed for AT-281 at concentrations up to 170 μM. After oral administration of AT-752, substantial levels of the active triphosphate metabolite AT-9010 were formed in vivo in peripheral blood mononuclear cells of mice, rats and monkeys. Furthermore, AT-9010 competed with guanosine triphosphate in RNA template-primer elongation assays with DENV-2 RNA polymerase, which is essential for viral replication, with incorporation of AT-9010 resulting in termination of RNA synthesis. In AG129 mice infected with DENV D2Y98P, treatment with AT-752 significantly reduced viremia and morbidity and increased survival. The demonstrated in vitro and in vivo activity of AT-752 suggest that it is a promising compound for the treatment of dengue virus infection, and is currently under evaluation in clinical studies.


2021 ◽  
Vol 102 (10) ◽  
Author(s):  
Wisam-Hamzah Al Shujairi ◽  
Luke P. Kris ◽  
Kylie van der Hoek ◽  
Evangeline Cowell ◽  
Gustavo Bracho-Granado ◽  
...  

Viperin has antiviral function against many viruses, including dengue virus (DENV), when studied in cells in culture. Here, the antiviral actions of viperin were defined both in vitro and in a mouse in vivo model of DENV infection. Murine embryonic fibroblasts (MEFs) derived from mice lacking viperin (vip−/−) showed enhanced DENV infection, accompanied by increased IFN-β and induction of ISGs; IFIT1 and CXCL-10 but not IRF7, when compared to wild-type (WT) MEFs. In contrast, subcutaneous challenge of immunocompetent WT and vip−/− mice with DENV did not result in enhanced infection. Intracranial infection with DENV resulted in body weight loss and neurological disease with a moderate increase in mortality in vip−/− compared with WT mice, although this was not accompanied by altered brain morphology, immune cell infiltration or DENV RNA level in the brain. Similarly, DENV induction of IFN-β, IFIT1, CXCL-10, IRF7 and TNF-α was not significantly different in WT and vip−/− mouse brain, although there was a modest but significant increase in DENV induction of IL-6 and IfI27la in the absence of viperin. NanoString nCounter analysis confirmed no significant difference in induction of a panel of inflammatory genes in WT compared to vip−/− DENV-infected mouse brains. Further, polyI:C stimulation of bone marrow-derived macrophages (BMDMs) induced TNF-α, IFN-β, IL-6 and Nos-2, but responses were not different in BMDMs generated from WT or vip−/− mice. Thus, while there is significant evidence of anti-DENV actions of viperin in some cell types in vitro, for DENV infection in vivo a lack of viperin does not affect systemic or brain susceptibility to DENV or induction of innate and inflammatory responses.


2013 ◽  
Vol 109 (02) ◽  
pp. 280-289 ◽  
Author(s):  
Maria Annunziata Carluccio ◽  
Mariangela Pellegrino ◽  
Nadia Calabriso ◽  
Carlo Storelli ◽  
Giuseppe Martines ◽  
...  

SummaryMatrix metalloproteinase (MMP)-9 plays an important role in stroke by accelerating matrix degradation, disrupting the blood-brain barrier and increasing infarct size. Dipyridamole is an antiplatelet agent with recognised benefits in ischaemic stroke prevention. In addition to its antiplatelet properties, recent studies have reported that dipyridamole also features anti-inflammatory and anti-oxidant properties. We therefore investigated whether dipyridamole can ameliorate the proinflammatory profile of human monocytes, a source of MMP-9 in stroke, in terms of regulation of MMP-9 activity and expression, and explored underlying mechanisms. Human peripheral blood mononuclear cells (PBMC) and U937 cells were treated with increasing concentrations of dipyridamole (up to 10 µg/ml) for 60 minutes before stimulation with tumour necrosis factor (TNF)-α or phorbol myristate acetate (PMA). Exposure of PBMC and U937 to dipyridamole reduced TNF-α- and PMA-induced MMP-9 activity and protein release as well as MMP-9 mRNA, without significantly affecting the release of TIMP-1. This inhibitory effect was independent of dipyridamole-induced cyclic adeno-sine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) increase. Correspondingly, dipyridamole also significantly inhibited TNF-α-induced nuclear factor (NF)-κB activation and nuclear translocation of the p65 NF-κB subunit through a mechanism involving the inhibition of IkBα degradation and p38 MAPK activation. In conclusion, dipyridamole, at therapeutically achievable concentrations, reduces the expression and release of MMP-9 through a mechanism involving p38 MAPK and NF-κB inhibition. These results indicate that dipyridamole exerts anti-inflammatory properties in human monocytes that may favourably contribute to its actions in the secondary prevention of stroke, independent of its antiplatelet properties.


2005 ◽  
Vol 98 (6) ◽  
pp. 2045-2055 ◽  
Author(s):  
T. H. Elsasser ◽  
J. W. Blum ◽  
S. Kahl

A subpopulation of calves, herein termed “hyperresponders” (HPR), was identified and defined by the patterns of plasma TNF-α concentrations that developed following two challenges with endotoxin (LPS, 0.8 μg Escherichia coli 055:B5 LPS/kg0.75live body wt) separated by 5 days. The principle characteristic of HPR calves was a failure to develop tolerance to repeated LPS challenge that was evident in the magnitude of the TNF-α concentrations and prolonged severity of pathological sequellae. Whereas calves failing to develop LPS tolerance were identified on the basis of their excessive in vivo plasma TNF-α concentration responses, in vitro TNF-α responses of peripheral blood mononuclear cells isolated from each calf and challenged with LPS or PMA did not correlate or predict the magnitude of in vivo plasma TNF response of the calf. Intentional breeding to obtain calves from bulls and/or cows documented as HPR resulted in offspring displaying the HPR character when similar progeny calves were tested with LPS in vivo, with extensive controls in place to account for sources of variability in the general TNF-α response to LPS that might compromise interpretation of the data. Feed intake, clinical serology and hematology profiles, and acute-phase protein responses of HPR calves following LPS were significantly different from those of calves displaying tolerance. These results suggest that the pattern of plasma TNF-α changes that evolve from a low-level double LPS challenge effectively reveal the presence of a genetic potential for animals to display excessive or prolonged pathological response to LPS-related stress and compromised prognosis for recovery.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1081-1081 ◽  
Author(s):  
Chris Yatko ◽  
Christopher Herrem ◽  
Samia Siddiqui ◽  
Victor S. Sloan

Abstract Background: In idiopathic thrombocytopenic purpura (ITP), autoantibodies bind to platelets which are then phagocytosed by monocytes/macrophages and removed by the reticuloendothelial system. PRTX-100 (Staphylococcal protein A) is being investigated for the treatment of ITP. Objective: To assess the effect of PRTX-100 on phagocytosis of platelets in an in vitro assay. Methods: Human monocytes were isolated from whole blood peripheral blood mononuclear cells (PBMCs) by adherence and cultured for 6 days in RPMI + 5% human serum. 48 hours prior to phagocytosis assay, PRTX-100 was added at 250, 25, and 2.5ng/ml. Human platelets were labeled with a fluorescent (PerCP) lipophilic dye and opsonized with an antibody to MHC Class I (W632). 2×10−5 monocytes were co-cultured with 2×10−7 labeled platelets for 1 hour at 37 ° C. All conditions were performed in triplicate. After an hour, phycoerythrin (PE) labeled anti-CD61 antibody was added to assess surface bound platelets versus ingested platelets. Phagocytosis was determined by flow cytometric analysis. The monocyte population was gated upon by forward and side scatter properties, then verified by staining with CD14-FITC. Percent phagocytosis was calculated as the fraction of ingested platelets (PerCP +/CD61−) to the total PerCP population (PerCP +/CD61−) + ( PerCP+/CD61+) within the gated monocyte population. Results: PRTX-100 inhibits the phagocytosis of W632 opsonized platelets by human monocytes. Phagocytosis of W632 opsonized platelets was 40%, while phagocytosis in the presence of PRTX-100 at concentrations of 250, 25, and 2.5ng/ml was 18.3%, 23%, and 24.3%, respectively. Phagocytosis at 250ng/ml and 25ng/ml was significantly different from control phagocytosis with p values of 0.014 and 0.001 respectively by Student’s t test. Conclusions: PRTX-100 inhibits the phagocytosis of platelets by monocytes, the effector limb of ITP. Prevention of platelet phagocytosis is an important treatment goal in ITP. PRTX-100 has been shown to be generally safe and well-tolerated in a phase I study in healthy volunteers (J Clin Pharmacol, in press). PRTX -100 is a promising therapeutic option for ITP and deserves further study. Effect of PRTX-100 on In Vitro Phagocytosis of Opsonized Human Platelets Effect of PRTX-100 on In Vitro Phagocytosis of Opsonized Human Platelets


2010 ◽  
Vol 19 (4) ◽  
pp. 369-386 ◽  
Author(s):  
M. Bouchentouf ◽  
P. Paradis ◽  
K. A. Forner ◽  
J. Cuerquis ◽  
M. N. Boivin ◽  
...  

In this study, we have investigated the hypothesis that previously reported beneficial effect of peripheral blood mononuclear cells cultured under angiogenic conditions on cardiovascular function following ischemia is not limited to EPCs but also to monocytes contained therein. We first purified and analyzed the phenotype and secretome of human and murine blood monocytes cultured under angiogenic conditions (named MDs for monocyte derivatives) and tested their effect in a mouse model of myocardial infarction (MI). FACS analysis of MDs shows that these cells express mature endothelial cell markers and that their proliferative capacity is virtually absent, consistent with their end-differentiated monocytic ontogeny. MDs secreted significant levels of HGF, IGF-1, MCP-1, and sTNFR-1 relative to their monocyte precursors. MDs were unable to form vascular networks in vitro when cultured on matrix coated flasks. Treatment of murine HL-1 cardiomyocyte cell line with MD-conditioned medium reduced their death induced by TNF-α, staurosporine, and oxidative stress, and this effect was dependent upon MD-derived sTNFR-1, HGF, and IGF-1. We further demonstrate that MD secretome promoted endothelial cell proliferation and capacity to form vessels in vitro and this was dependent upon MD-derived MCP-1, HGF, and IGF-1. Echocardiography analysis showed that MD myocardial implantation improved left ventricle fractional shortening of mouse hearts following MI and was associated with reduced myocardial fibrosis and enhancement of angiogenesis. Transplanted MDs and their secretome participate in preserving functional myocardium after ischemic insult and attenuate pathological remodeling.


1999 ◽  
Vol 73 (2) ◽  
pp. 1518-1527 ◽  
Author(s):  
Mauro Pistello ◽  
Donatella Matteucci ◽  
Giancarlo Cammarota ◽  
Paola Mazzetti ◽  
Simone Giannecchini ◽  
...  

ABSTRACT The effects of preinfecting cats with a partially attenuated feline immunodeficiency virus (FIV) on subsequent infection with a fully virulent FIV belonging to a different subtype were investigated. Eight specific-pathogen-free cats were preinfected with graded doses of a long-term in vitro-cultured cell-free preparation of FIV Petaluma (FIV-P, subtype A). FIV-P established a low-grade or a silent infection in the inoculated animals. Seven months later, the eight preinfected cats and two uninfected cats were challenged with in vivo-grown FIV-M2 (subtype B) and periodically monitored for immunological and virological status. FIV-P-preinfected cats were not protected from acute infection by FIV-M2, and the sustained replication of this virus was accompanied by a reduction of FIV-P viral loads in the peripheral blood mononuclear cells and plasma. However, from 2 years postchallenge (p.c.) until 3 years p.c., when the experiment was terminated, preinfected cats exhibited reduced total viral burdens, and some also exhibited a diminished decline of circulating CD4+ T lymphocytes relative to control cats infected with FIV-M2 alone. Interestingly, most of the virus detected in challenged cats at late times p.c. was of FIV-P origin, indicating that the preinfecting, attenuated virus had become largely predominant. By the end of follow-up, two challenged cats had no FIV-M2 detectable in the tissues examined. The possible mechanisms underlying the interplay between the two viral populations are discussed.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Youxia Liu ◽  
Hongfen Li ◽  
Huyan Yu ◽  
Fanghao Wang ◽  
Junya Jia ◽  
...  

Abstract Background The addition of sialic acid alters IgG from a pro-inflammatory state to an anti-inflammatory state. However, there is a lack of research on the changes of IgG sialylation in IgA nephropathy (IgAN). Methods This study included a total of 184 IgAN patients. The sialylated IgG (SA-IgG), IgG-galactose-deficient IgA1 complex (IgG-Gd-IgA1-IC), IL-6, TNF-α, and TGF-β were detected using commercial ELISA kits. SA-IgG, non-sialylated IgG (NSA-IgG), sialylated IgG-IgA1 complex (SA-IgG-IgA1), and non-sialylated IgG-IgA1 complex (NSA-IgG-IgA1) were purified from IgAN patients and healthy controls (HCs). Results The mean SA-IgG levels in plasma and B lymphocytes in IgAN patients were significantly higher than those of healthy controls. A positive correlation was found between SA-IgG levels in plasma and B lymphocytes. In vitro, the results showed that the release of IgG-Gd-IgA1-IC was significantly decreased in peripheral blood mononuclear cells (PBMCs) cultured with SA-IgG from both IgAN patients and healthy controls. The proliferation ability and the release of IL-6, TNF-α, and TGF-β in human mesangial cells (HMCs) were measured after stimulating with SA-IgG-IgA1-IC and NSA-IgG-IgA1-IC. The mesangial cell proliferation levels induced by NSA-IgG-IgA1-IC derived from IgAN patients were significantly higher than those caused by SA-IgG-IgA1-IC derived from IgAN patients and healthy controls. Compared with NSA-IgG-IgA1 from healthy controls, IgAN-NSA-IgG-IgA1 could significantly upregulate the expression of IL-6 and TNF-α in mesangial cells. The data showed that there weren’t any significant differences in the levels of IL-6, TNF-α, and TGF-β when treated with IgAN-SA-IgG-IgA1 and HC-NSA-IgG-IgA1. Conclusions The present study demonstrated that the sialylation of IgG increased in patients with IgA nephropathy. It exerted an inhibitory effect on the formation of Gd-IgA1-containing immune complexes in PBMCs and the proliferation and inflammation activation in mesangial cells.


Sign in / Sign up

Export Citation Format

Share Document