scholarly journals Two novel mutations in the DNAH11 gene in primary ciliary dyskinesia (CILD7) with considerable variety in the clinical and beating cilia phenotype

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Rüdiger Schultz ◽  
Varpu Elenius ◽  
Heikki Lukkarinen ◽  
Tanja Saarela

Abstract Background Diagnosis of primary ciliary dyskinesia (PCD) still remains a challenge, especially with mutations in the Dynein Arm Heavy Chain 11 (DNAH11) gene. Classical diagnostic measures like Transmission Electron Microscopy (TEM) are not applicable for mutations in the DNAH11 gene since ultrastructural defects of the ciliary apparatus are absent. Novel mutations encoding for PCD appear all the time with considerable variation in the clinical picture, making it necessary to update data bases and guidelines for PCD diagnostics. Methods In this study we examined two unrelated, Finnish families with symptoms of PCD applying the clinical scoring system: Primary ciliary dyskinesia Rule (PICADAR), high speed video microscopy analysis (HSVMA) for ciliary movement, a commercially available gene panel analysis and nasal Nitric Oxide (nNO) measurements if applicable. Results Two, likely pathogenic variants in the DNAH11 gene (c.2341G > A, p. (Glu781Lys) ja c.7645 + 5G > A) were detected. In the first family, compound heterozygous mutations led to disease manifestation in two of 4 children, which showed a similar phenotype of cilia beating pattern but marked differences in disease severity. In the second family, all three children were homozygotes for the c.2341G > A p.(Glu781Lys) mutation and showed a similar degree of disease severity. However, the phenotype of cilia beating pattern was different ranging from stiff, static cilia to a hyperkinetic movement in one of these children. Conclusions In this study we describe two Finnish families with PCD, revealing two novel mutations in the DNAH11 gene which show considerable variety in the clinical and beating cilia phenotype. The results of this study show the clinician that PCD can be much milder than generally expected and diagnosis demands a combination of measures which are only successful in experienced hands. Chronic and repeatedly treated wet cough should raise suspicion of PCD, referring the patient for further diagnostics to a specialised PCD centre.

Breathe ◽  
2017 ◽  
Vol 13 (3) ◽  
pp. 166-178 ◽  
Author(s):  
Claudia E. Kuehni ◽  
Jane S. Lucas

Key pointsPrimary ciliary dyskinesia (PCD) is a genetically and clinically heterogeneous disease characterised by abnormal motile ciliary function.There is no “gold standard” diagnostic test for PCD.The European Respiratory Society (ERS) Task Force Guidelines for diagnosing PCD recommend that patients should be referred for diagnostic testing if they have several of the following features: persistent wet cough; situs anomalies; congenital cardiac defects; persistent rhinitis; chronic middle ear disease with or without hearing loss; or a history, in term infants, of neonatal upper and lower respiratory symptoms or neonatal intensive care admission.The ERS Task Force recommends that patients should be investigated in a specialist PCD centre with access to a range of complementary tests: nasal nitric oxide, high-speed video microscopy analysis and transmission electron microscopy. Additional tests including immunofluorescence labelling of ciliary proteins and genetic testing may also help determine the diagnosis.Educational aimsThis article is intended for primary and secondary care physicians interested in primary ciliary dyskinesia (PCD), i.e. those who identify patients for testing, and those involved in diagnosing and managing PCD patients. It aims: to inform readers about the new European Respiratory Society Task Force Guidelines for diagnosing patients with PCDto enable primary and secondary care physicians to: identify patients who need diagnostic testing; understand the diagnostic tests that their patients will undergo, the results of the tests and their limitations; and ensure that appropriate care is subsequently delivered.


2019 ◽  
Vol 57 (4) ◽  
pp. 237-244 ◽  
Author(s):  
Sylvain Blanchon ◽  
Marie Legendre ◽  
Mathieu Bottier ◽  
Aline Tamalet ◽  
Guy Montantin ◽  
...  

BackgroundPrimary ciliary dyskinesia (PCD) is a rare genetic disorder resulting in abnormal ciliary motility/structure, extremely heterogeneous at genetic and ultrastructural levels. We aimed, in light of extensive genotyping, to identify specific and quantitative ciliary beating anomalies, according to the ultrastructural phenotype.MethodsWe prospectively included 75 patients with PCD exhibiting the main five ultrastructural phenotypes (n=15/group), screened all corresponding PCD genes and measured quantitative beating parameters by high-speed video-microscopy (HSV).ResultsSixty-eight (91%) patients carried biallelic mutations. Combined outer/inner dynein arms (ODA/IDA) defect induces total ciliary immotility, regardless of the gene involved. ODA defect induces a residual beating with dramatically low ciliary beat frequency (CBF) related to increased recovery stroke and pause durations, especially in case of DNAI1 mutations. IDA defect with microtubular disorganisation induces a low percentage of beating cilia with decreased beating angle and, in case of CCDC39 mutations, a relatively conserved mean CBF with a high maximal CBF. Central complex defect induces nearly normal beating parameters, regardless of the gene involved, and a gyrating motion in a minority of ciliated edges, especially in case of RSPH1 mutations. PCD with normal ultrastructure exhibits heterogeneous HSV values, but mostly an increased CBF with an extremely high maximal CBF.ConclusionQuantitative HSV analysis in PCD objectives beating anomalies associated with specific ciliary ultrastructures and genotypes. It represents a promising approach to guide the molecular analyses towards the best candidate gene(s) to be analysed or to assess the pathogenicity of the numerous sequence variants identified by next-generation-sequencing.


2020 ◽  
Vol 6 (4) ◽  
pp. 00213-2020
Author(s):  
Alex Gileles-Hillel ◽  
Hagar Mor-Shaked ◽  
David Shoseyov ◽  
Joel Reiter ◽  
Reuven Tsabari ◽  
...  

The diagnosis of primary ciliary dyskinesia (PCD) relies on clinical features and sophisticated studies. The detection of bi-allelic disease-causing variants confirms the diagnosis. However, a standardised genetic panel is not widely available and new disease-causing genes are continuously identified.To assess the accuracy of untargeted whole-exome sequencing (WES) as a diagnostic tool for PCD, patients with symptoms highly suggestive of PCD were consecutively included. Patients underwent measurement of nasal nitric oxide (nNO) levels, ciliary transmission electron microscopy analysis (TEM) and WES. A confirmed PCD diagnosis in symptomatic patients was defined as a recognised ciliary ultrastructural defect on TEM and/or two pathogenic variants in a known PCD-causing gene.Forty-eight patients (46% male) were enrolled, with a median age of 10.0 years (range 1.0–37 years). In 36 patients (75%) a diagnosis of PCD was confirmed, of which 14 (39%) patients had normal TEM. A standalone untargeted WES had a diagnostic yield of 94%, identifying bi-allelic variants in 11 known PCD-causing genes in 34 subjects. A nNO<77 nL·min was nonspecific when including patients younger than 5 years (area under the receiver operating characteristic curve (AUC) 0.75, 95% CI 0.60–0.90). Consecutive WES considerably improved the diagnostic accuracy of nNO in young children (AUC 0.97, 95% CI 0.93–1). Finally, WES established an alternative diagnosis in four patients.In patients with clinically suspected PCD and low nNO levels, WES is a simple, beneficial and accurate next step to confirm the diagnosis of PCD or suggest an alternative diagnosis, especially in preschool-aged children in whom nNO is less specific.


2019 ◽  
Vol 128 (11) ◽  
pp. 1081-1085
Author(s):  
Sung Min Han ◽  
Chi Sang Hwang ◽  
Hyun Jong Jeon ◽  
Ho Young Lee ◽  
Hyung-Ju Cho ◽  
...  

Objectives: The diagnosis of primary ciliary dyskinesia (PCD) is often delayed in part related to the limitations of the available diagnostic tests. We present 3 cases of PCD diagnosed using an exhaled nitric oxide (eNO) measurement. Methods: Three cases with a clinical phenotype consistent with PCD were evaluated using an eNO assay with additional transmission electron microscopy (TEM) and/or genetic panel testing. Results: One male and 2 female patients presented with common symptoms included recurrent respiratory infection from early childhood and a history of neonatal respiratory distress as term newborn. Two of them had situs inversus totalis. Fractional eNO measurement revealed extremely low NO levels, and subsequently, TEM analysis confirmed ciliary ultrastructural defects in all patients. One patient had compound heterozygous mutation of the PCD-causative gene ( DNAH5) identified using next generation sequencing. Conclusion: Our report stresses the reliability of eNO measurement in the diagnosis of PCD, accompanied by clinical phenotypes and additional diagnostic tools, such as TEM analysis and genetic testing.


2020 ◽  
Vol 9 (11) ◽  
pp. 3753
Author(s):  
Janice L. Coles ◽  
James Thompson ◽  
Katie L. Horton ◽  
Robert A. Hirst ◽  
Paul Griffin ◽  
...  

Air–liquid interface (ALI) culture of nasal epithelial cells is a valuable tool in the diagnosis and research of primary ciliary dyskinesia (PCD). Ex vivo samples often display secondary dyskinesia from cell damage during sampling, infection or inflammation confounding PCD diagnostic results. ALI culture enables regeneration of healthy cilia facilitating differentiation of primary from secondary ciliary dyskinesia. We describe a revised ALI culture method adopted from April 2018 across three collaborating PCD diagnostic sites, including current University Hospital Southampton COVID-19 risk mitigation measures, and present results. Two hundred and forty nasal epithelial cell samples were seeded for ALI culture and 199 (82.9%) were ciliated. Fifty-four of 83 (63.9%) ex vivo samples which were originally equivocal or insufficient provided diagnostic information following in vitro culture. Surplus basal epithelial cells from 181 nasal brushing samples were frozen in liquid nitrogen; 39 samples were ALI-cultured after cryostorage and all ciliated. The ciliary beat patterns of ex vivo samples (by high-speed video microscopy) were recapitulated, scanning electron microscopy demonstrated excellent ciliation, and cilia could be immuno-fluorescently labelled (anti-alpha-tubulin and anti-RSPH4a) in representative cases that were ALI-cultured after cryostorage. In summary, our ALI culture protocol provides high ciliation rates across three centres, minimising patient recall for repeat brushing biopsies and improving diagnostic certainty. Cryostorage of surplus diagnostic samples was successful, facilitating PCD research.


2015 ◽  
Vol 47 (3) ◽  
pp. 837-848 ◽  
Author(s):  
Claire L. Jackson ◽  
Laura Behan ◽  
Samuel A. Collins ◽  
Patricia M. Goggin ◽  
Elizabeth C. Adam ◽  
...  

Diagnosis of primary ciliary dyskinesia (PCD) lacks a “gold standard” test and is therefore based on combinations of tests including nasal nitric oxide (nNO), high-speed video microscopy analysis (HSVMA), genotyping and transmission electron microscopy (TEM). There are few published data on the accuracy of this approach.Using prospectively collected data from 654 consecutive patients referred for PCD diagnostics we calculated sensitivity and specificity for individual and combination testing strategies. Not all patients underwent all tests.HSVMA had excellent sensitivity and specificity (100% and 93%, respectively). TEM was 100% specific, but 21% of PCD patients had normal ultrastructure. nNO (30 nL·min−1 cut-off) had good sensitivity and specificity (91% and 96%, respectively). Simultaneous testing using HSVMA and TEM was 100% sensitive and 92% specific.In conclusion, combination testing was found to be a highly accurate approach for diagnosing PCD. HSVMA alone has excellent accuracy, but requires significant expertise, and repeated sampling or cell culture is often needed. TEM alone is specific but misses 21% of cases. nNO (≤30 nL·min−1) contributes well to the diagnostic process. In isolation nNO screening at this cut-off would miss ∼10% of cases, but in combination with HSVMA could reduce unnecessary further testing. Standardisation of testing between centres is a future priority.


2021 ◽  
Author(s):  
Pengcheng Xia ◽  
Jing Chen ◽  
Xiaohui Bai ◽  
Ming Li ◽  
Le Wang ◽  
...  

Abstract Background. Alzheimer's disease (AD) is closely related to aging, showing an increasing incidence rate for years. As one of the main organs involved in AD, hippocampus has been extensively studied due to its association with many human diseases. However, little knowledge is known on its association with primary ciliary dyskinesia (PCD).Material and Methods. The microarray data of hippocampus on AD were retrieved from the Gene Expression Omnibus (GEO) database to construct the co-expression network by weighted gene co-expression network analysis (WGCNA). The gene network modules associated with AD screened with the common genes were further annotated based on Gene Ontology (GO) database and enriched based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The protein-protein interaction (PPI) network was constructed based on STRING database to identify the hub genes in the network.Results. Genes involved in PCD were identified in the hippocampus of AD patients. Functional analysis revealed that these genes were mainly enriched in ciliary tissue, ciliary assembly, axoneme assembly, ciliary movement, microtubule based process, microtubule based movement, organelle assembly, axoneme dynamin complex, cell projection tissue, and microtubule cytoskeleton tissue. A total of 20 central genes, e.g.,DYNLRB2, ZMYND10, DRC1, DNAH5, WDR16, TTC25, and ARMC4 were identified as hub genes related to PCD in hippocampus of AD patients.Conclusion. Our study demonstrated that AD and PCD have shared metabolic pathways. These common pathways provide novel evidence for further investigation of the pathophysiological mechanism and the hub genes suggest new therapeutic targets for the diagnosis and treatment of AD and PCD.Subjects Bioinformatics, Cell Biology, Molecular Biology, Neurology


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1540
Author(s):  
Loretta Müller ◽  
Sibel T. Savas ◽  
Stefan A. Tschanz ◽  
Andrea Stokes ◽  
Anaïs Escher ◽  
...  

Primary ciliary dyskinesia (PCD) is a rare genetic disease characterized by dyskinetic cilia. Respiratory symptoms usually start at birth. The lack of diagnostic gold standard tests is challenging, as PCD diagnostics requires different methods with high expertise. We founded PCD-UNIBE as the first comprehensive PCD diagnostic center in Switzerland. Our diagnostic approach includes nasal brushing and cell culture with analysis of ciliary motility via high-speed-videomicroscopy (HSVM) and immunofluorescence labeling (IF) of structural proteins. Selected patients undergo electron microscopy (TEM) of ciliary ultrastructure and genetics. We report here on the first 100 patients assessed by PCD-UNIBE. All patients received HSVM fresh, IF, and cell culture (success rate of 90%). We repeated the HSVM with cell cultures and conducted TEM in 30 patients and genetics in 31 patients. Results from cell cultures were much clearer compared to fresh samples. For 80 patients, we found no evidence of PCD, 17 were diagnosed with PCD, two remained inconclusive, and one case is ongoing. HSVM was diagnostic in 12, IF in 14, TEM in five and genetics in 11 cases. None of the methods was able to diagnose all 17 PCD cases, highlighting that a comprehensive approach is essential for an accurate diagnosis of PCD.


Author(s):  
Bruna Rubbo ◽  
Isabel Reading ◽  
Amelia Shoemark ◽  
Claire Jackson ◽  
Robert A. Hirst ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document